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Resumo

Tolerância a falhas (TF) é uma preocupação comum em ambientes de Computação de Alta
Desempenho (CAD). Seria de se esperar que, quando se trata de Message Passing Interface
(MPI) (uma ferramenta para CAD de suma importância), TF seria um problema resolvido.
Contudo, o cenário para TF e MPI é complexo. Embora TF seja efetivamente uma realidade
nesses ambientes, geralmente é “feita à mão”. As poucas exceções disponíveis vinculam
os usuários MPI a implementações MPI específicas. Este trabalho propõe OCFTL, uma
Biblioteca de TF que não é dependente de nenhuma implementação MPI específica para ser
usada no OmpCluster, para aplicações paralelas baseadas em tarefas. O OCFTL é capaz
de detectar falhas em menos de um segundo. Também fornece detecção de falha em caso de
falso positivo, reparo do comunicador MPI e pode isolar os usuários do comportamento não
especificado de operações MPI na presença de falhas. Os resultados dentro do OmpCluster
mostram que o OCFTL não implica sobrecarga significativa e permite que os programas
OmpCluster sobrevivam de falhas e sejam executados com êxito depois da ocorrência
delas. Além disso, os resultados do Intel MPI Benchmarks mostram que o OCFTL pode
superar as técnicas de ponta com a portabilidade de ser independente de implementação,
permitindo a execução dos programas em distribuições MPI mais rápidas para diferentes
casos.

Palavras-Chaves: Tolerância a falhas, Message Passing Interface (MPI), High-Performance
Computing, OmpCluster.





Abstract
Fault tolerance (FT) is a common concern in HPC environments. One would expect
that, when Message Passing Interface (MPI) is concerned (an HPC tool of paramount
importance), FT would be a solved problem. It turns out that the scenario for FT and
MPI is intricate. While FT is effectively a reality in these environments, it is usually done
by hand. The few exceptions available tie MPI users to specific MPI implementations. This
work proposes OCFTL, an Implementation Independent FT Library for MPI, to be used in
OmpCluster, for task-based parallel applications. OCFTL is capable of detecting failures
in less than a second. It also provides false-positive failure detection, MPI communicator
repair, and it can isolate users from unspecified behavior of MPI operations in the
presence of failures. Results within the OmpCluster show that OCFTL does not imply
significant overhead and permits OmpCluster programs to survive from failures and execute
successfully after. Moreover, results leveraging Intel MPI Benchmarks show that OCFTL
can overcome state-of-the-art techniques with the portability of being implementation-
independent, permitting the execution of the programs in faster MPI distributions for
different cases.

Keywords: Fault Tolerance; Message Passing Interface (MPI), High-Performance Com-
puting, OmpCluster.
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1

1 Introduction

Many applications have been developed by scientific research in many areas, such
as the advances of sequencing technologies in molecular biology (MIKAILOV et al., 2017)
or geophysical data processing from spacecraft radars (NAEIMI et al., 2016). These
applications often require high computational resources, which make the use of regular
computing systems (PCs and small clusters) inviable, often requiring the use of High-
Performance Computing Systems (HPC). These HPC systems are composed of multiple
computing systems that allow the computation of applications to be divided across those
nodes, speeding up the process.

A variety of tools are used to develop and parallelize applications in HPC systems,
for example, the Message Passing Interface (MPI). Typically, the developers of those
applications and users of HPC environments are not computer scientists, but a specialists
in their domains. Domain-specific knowledge and the usage of specialized tools for HPC
make the development of a complete, correct, and efficient system a daunting task.

With the distribution of the program across multiple computing nodes, one common
concern is fault tolerance (FT), since a large number of computing nodes ultimately leads
to an increased failure rate (ELLIOTT et al., 2012). Normally, the main cause of failures
in HPC systems is from hardware or software, human factors, malicious attacks, server
overloads, and network congestion (EGWUTUOHA et al., 2013). Table 1 shows the mean
time between failures (MTBF)1 for some HPC systems (DI et al., 2019). As seen, the
MTBF can be less than one day, which justifies the concern about fault tolerance since
HPC workloads have makespans that vary from days to even months.

Table 1 – Mean Time Between Failure for HPC systems

HPC System MTBF
IBM Blue Gene/Q Mira (DI et al., 2019) 3.5 days
Titan Supercomputer (at OLCF) (ROJAS et al., 2019) approx. 7 hours
Los Alamos National Lab System 5 (EGWUTUOHA et al., 2013) approx. 55 hours
Los Alamos National Lab System 20 (EGWUTUOHA et al., 2013) approx. 14 hours

Fault tolerance is an essential property of systems that need to run applications
in the presence of failures. FT approaches are commonly divided into two main groups:
Reactive and Proactive (HASAN; GORAYA, 2018). When it comes to MPI (the focus of
this work), even today, the development of fault-tolerant applications is done manually, with
1 The MTBF represents the average time between failures. It takes into account the MTTF (mean time

to failure, expected time for the failure) and the MTTR (mean time to repair, the time that the service
will stay interrupted)(PATTERSON; HENNESSY, 2016).
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some exceptions like ULFM and MPICH. User Level Failure Migration (ULFM) (BLAND et
al., 2013) is an extension to Open MPI, whereas MPICH has its own FT routines (BOSILCA
et al., 2002). However, these approaches are not portable nor easy to use and are far from
complete FT solutions.

To tackle those problems, OmpCluster2 is a project that aims at easing the develop-
ment applications in HPC environments. When using OmpCluster, most tools needed for
parallel and distributed HPC application development are transparent to the user. To use
it, the user (generally from non-computing areas) only needs to know one tool: OpenMP,
which is a set of annotations used in the program code that automatically parallelizes the
execution requiring less effort from the user. OmpCluster also provides container images
that can be used to abstract any other requirements, such as installing necessary libraries.
OmpCluster is a tool to be used in HPC systems. It uses MPI to automatically distribute
the tasks created using OpenMP across the computing nodes. All this is done by leveraging
LLVM’s compiler infrastructure.

OmpCluster uses the omptarget library of OpenMP. This library focuses on the
offloading of the computation to specific targets. These targets are devices that execute
computation, like GPUs, or in OmpCluster’s case, another process in a distributed system,
in which, OmpCluster uses MPI to do communication between processes. This procedure
characterizes a task-based workflow for OmpCluster, where the tasks generated by OpenMP
are distributed via MPI to be executed by the devices.

Since MPI is at the core of the OmpCluster, and that MPI has significant limitations
related to FT as mentioned above, this research aims at improving the resilience of the
OmpCluster by providing fault tolerance through MPI. One of the main objectives of the
OmpCluster is to be portable (having compatibility with different MPI implementations
and HPC systems). Thus, this research aims to provide a portable and implementation-
independent (MPI-wise) fault tolerance library, which will be referred to as OCFTL
(OmpCluster Fault Tolerance Library). This library also needs to follow the restrictions
implied by OmpCluster, being compatible with the most recent MPI standard, easy to
update, and transparent to the final user of OmpCluster. Although this work focuses on
OCFTL in OmpCluster, the library could be used stand-alone with other applications.

OCFTL provides mechanisms to detect and notify all active processing nodes about
failures. It also provides extra functionalities such as MPI communicator repairs and
recovering from failures with low overhead and latency. The results of this research show
that OCFTL can detect and survive failures and recover from them using checkpointing.
Even if OCFTL’s overhead is higher when compared to other distribution-specific MPI
FT libraries (e.g., ULFM), it has the advantage of being portable and therefore can be
used with faster MPI distributions. Additionally it supports some functionalities (such as
2 Site project: <https://ompcluster.gitlab.io/>

https://ompcluster.gitlab.io/
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FT broadcast with reduced number of messages and false positive failure detection) which
are not present in all distribution-specific implementations.

Besides this document, this research resulted in two papers published in the ERAD-
SP 2020 and ERAD-SP 2021. The first discussed FT reactive approaches integration
with scheduling (ROSSO; FRANCESQUINI, 2020), while the second discussed the failure
detection and propagation mechanisms (ROSSO; FRANCESQUINI, 2021). Both papers
earned the award of Best Paper in the Graduate Category of each edition.

Following, it is described the objectives of this research and the Organization of
this document.

1.1 Objectives

Main

• Improve the resilience of MPI in OmpCluster, providing a fault tolerance solution
for MPI, which is capable of detecting failures, surviving them, and completing the
program execution correctly even if in the presence of failures.

Specific Objectives

• Provide a transparent, easy to maintain and update, and implementation-independent
fault tolerance library for MPI to be used by OmpCluster. It is meant that the library
should not use functions or tools that are not well documented or discussed by the
community. These would make the process of fixing a bug or updating deprecated
functions hard.

• Employ different fault tolerance approaches to improve resilience.

• Provide multi-platform compatibility, enabling fault tolerance in HPC clusters and
cloud.

1.2 Organization
This work is divided into seven chapters. The first one is this introduction, and the

remaining chapters are organized as follows:

• Chapter 2 presents the background and motivation. This Chapter initially explores
some concepts of fault tolerance necessary to the understanding of the proposed
work. It also explores two of the fault tolerance challenges that this research will
face as a motivation, and finally, it presents the related works.
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• Chapter 3 presents an introduction to OmpCluster. In this Chapter, OmpCluster is
described in detail. Since this research is inserted in the OmpCluster, the Chapter
brings all necessary concepts to understand how the proposed fault tolerance library
will work.

• To organize the description of the proposal, this document divides it into two parts.
Chapter 4 presents the description of the fault tolerance tools implementation,
describing the design and rationale for each one. Moreover, Chapter 5 describes the
implementation of the integration and use of the FT tools by OmpCluster.

• Chapter 6 presents an experimental evaluation of the proposed FT. This Chapter
presents some MPI implementation-dependent behaviors, the benchmark of OCFTL,
and a comparison with state-of-the-art. It also presents the current limitations of
OCFTL.

• Chapter 7 outlines the conclusion of this work, pointing out the key contributions
and limitations of this research, also presenting future works for this research.
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2 Background and Motivation

To motivate this research, a review on the topics related to failures in HPC is
necessary. FT is a common concern in such systems since clusters with high node-count
lead to increased failures (ELLIOTT et al., 2012). To avoid misunderstandings, from the
outset will define some terminology. Failures relate to actual hardware or software failures,
and errors represent the manifestation of those failures (KOREN; KRISHNA, 2020). For
example, a failure in the hardware causes an operation to be wrong. An error will possibly
be generated if that operation is called and the computed result is wrong.

Another classification for the failures is based on their occurrence. Failures can be
permanent, transient, or intermittent (KOREN; KRISHNA, 2020). Permanent failures lead
the components to be unusable, needing restoration (e.g., migrating to another component
or component changing). Transient failures occur for some time, causing malfunction of a
component, and after a period, it is restored (EGWUTUOHA et al., 2013). Intermittent
failures, differently from transient failures, they occur and after some time the component
works again, and after a period of time the failure occurs again (KOREN; KRISHNA, 2020).
Finally, a final classification of failures is typical of hardware failures, which can be benign
when the component stops working or byzantine when the failure leads the component to
state a wrong result (KOREN; KRISHNA, 2020; HASAN; GORAYA, 2018). This work
focuses on permanent benign failures (although some attention is paid to transient failures).

One crucial part of fault tolerance is failure measuring, which explains failure
occurrence in different HPC systems. Traditional metrics are reliability and availability.
The first denotes the probability that the system will be up given a time interval, usually
relates to the MTBF, MTTF, and MTTR, which were discussed in Section n 1 (KOREN;
KRISHNA, 2020). Availability is the average of time, given an interval, that the system is
up, and can be calculated in terms of reliability metrics, A = MT T F

MT BF
(KOREN; KRISHNA,

2020).

Section 1 presented some HPC system measures, showing how low is the MTBF of
some systems nowadays. Many works study logs of failures in HPC systems with different
objectives. Some to give research directions to future studies on FT (OLINER; STEARLEY,
2007). Others to match failure occurrence into specific probability distributions such as
log-normal and Weibull (ROJAS et al., 2019; SCHROEDER; GIBSON, 2009; YUAN et
al., 2012), which is essential, for example, to generate failure injectors with the purpose of
testing. Other works try to characterize the systems through the classification of failure
causes and characteristics (DI et al., 2019). Finally, other works make analyses to create
models to predict failures (LIANG et al., 2006).
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Now that the basic concepts of failure in HPC are given and the importance of
fault tolerance in such systems was shown as motivation to this research, the rest of this
chapter brings the remaining concepts necessary to understand the design and use of FT
in OmpCluster. Section 2.1 discusses the main tools used in this research, also describing
some of the challenges related to FT in these tools. Section 2.2 discusses some concepts of
fault tolerance approaches. Finally, Section 2.3 revises the related work.

2.1 Tools employed in OmpCluster

The frameworks, specifications, and pieces of software used by OmpCluster are
described in this section. In this text, we employ the word tool to describe each one of these
components. Section 2.1.1 reviews some of the concepts of OpenMPI, while Section 2.1.2
the concepts of MPI.

2.1.1 OpenMP

OpenMP is an effort to ease the implementation of shared-memory parallel appli-
cations by providing a common and straightforward interface. It is important to note that
OpenMP is not a new programming language. Instead, it works by annotating existing
code written in C, C++, and Fortran (CHAPMAN; JOST; PAS, 2008). This characteristic
also makes OpenMP a good tool for the parallelization of existing sequential code with
reduced effort.

It provides many features that range from parallel control, which controls the flow
of the program (e.g., omp parallel), work sharing, to distribute the work among the threads
(e.g., omp section, omp single, omp for), data control, to control the scope and dependency
of data (e.g., shared, private variables), synchronization, controlling thread execution (e.g.,
barriers and atomic operations) and runtime features, to control the environment (e.g.,
number of threads) (CHAPMAN; JOST; PAS, 2008).

OpenMP strives to make its use simple, which is achieved by using code annotations
using compiler pragma directives (#pragma, in C/C++), followed by some OpenMP clauses.
For example, to construct a parallel region, one would use #pragma omp parallel, making
the following code block run in parallel in as many threads as available. Additionally,
suppose the user includes #pragma omp for before a loop definition (for in C or C++)
inside a parallel region. In that case, the loop will be broken into chunks, and each chunk
will transparently be distributed for parallel processing across the available OpenMP
threads. Several other OpenMP clauses define additional execution attributes for these
features.

Another feature of OpenMP is the omptarget library. This library defines the
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concept of targets, which are devices in which the computation can be offloaded1. Devices
can be, for example, a GPU card, or in the OmpCluster’s case, a process running in
another machine in a cluster.

Algorithm 1 shows a program parallelized with OpenMP with some #pragma
definitions. This code first creates a region of parallel code with the #pragma omp parallel
construct, after, #pragma omp single defines that only one of the OpenMP threads will
execute the code inside the parallel region, in this case, the outer for loop. In the sequence,
each time the code inspects the #pragma omp target directive, a task to be executed on a
target is defined, the depend(in:..., inout:...) defines that the associated target task
will depend on any previous task that modified BlockA, BlockB and BlockC and will be a
dependency of any task that will modify BlockC after. The map(to:..., tofrom:...)
construct means that the variables BlockA, BlockB and BlockC will be transferred to the
target and BlockC will be retrieved from the target. Finally, the nowait clause means that
no synchronism of OpenMP threads is needed after the target task statement.

Algorithm 1 – OpenMP parallelization example.

1 #define BS 512
2 #define N 2048
3 int BlockMatMul(BlockMatrix &A, BlockMatrix &B, BlockMatrix &C) {
4 #pragma omp parallel
5 #pragma omp single
6 for (int i = 0; i < N / BS; ++i)
7 for (int j = 0; j < N / BS; ++j) {
8 float *BlockC = C.GetBlock(i, j);
9 for (int k = 0; k < N / BS; ++k) {

10 float *BlockA = A.GetBlock(i, k);
11 float *BlockB = B.GetBlock(k, j);
12 #pragma omp target depend(in: BlockA[0], BlockB[0]) \
13 depend(inout: BlockC[0]) \
14 map(to: BlockA[:BS*BS], BlockB[:BS*BS]) \
15 map(tofrom: BlockC[:BS*BS]) nowait
16 #pragma omp parallel for
17 for(int ii = 0; ii < BS; ii++)
18 for(int jj = 0; jj < BS; jj++)
19 for(int kk = 0; kk < BS; ++kk)
20 BlockC[ii + jj * BS] += BlockA[ii + kk * BS] * BlockB[kk + jj * BS];
21 }
22 }
23 return 0;
24 }

OpenMP is available in compiler infrastructures, like GCC and LLVM/Clang
compiler (used in the OmpCluster project). The last published standard of OpenMP is
5.1, and it is available at the OpenMP site (<https://www.openmp.org>).
1 We call by offloading the process of transferring part of the program execution to another device.

https://www.openmp.org
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2.1.2 Message-Passing Interface - MPI

The Message-Passing Interface (MPI) is an effort to standardize the message-passing
protocol libraries, mainly focusing on the parallel programming model. MPI itself is not an
implementation or a language; instead, a standard. This way, all MPI procedures are made
via functions, methods, and binds to another language, such as C or Fortran (FORUM,
2015). MPI tries to establish a standard to be practical, portable, and efficient. MPI
provides many features, including point-to-point (e.g., send and receive between two
processes) and collective operations (e.g., broadcasts, reduce and gather operations),
datatypes, communication contexts, etc. (FORUM, 2015).

There are several MPI implementations, for example, MPICH (BOSILCA et al.,
2002), Open MPI (GABRIEL et al., 2004), MVAPICH (PANDA et al., 2021), IntelMPI2.
Each implementation has ample freedom to implement the standard and make decisions
about the behavior regarding non-specified behavior. Which allows MPI implementations
to make the most of the hardware architecture they are aiming for. In this work, some
MPI implementations were evaluated to check if they provide all the necessary features.
We found that Open MPI does not employ fault tolerance. Instead, their creators suggest
the use of an extension: ULFM (which was also evaluated). MPICH employs limited
fault tolerance since its failure detection mechanism is only available when using TCP/IP
communications. Similarly, MVAPICH, which relies on MPICH’s implementation, has the
same behavior. Although there are many MPI implementations, this research will focus in
the MPICH and OpenMPI distributions since they are very commonly used and are the
base for other MPI implementations, like MVAPICH and IntelMPI.

Section 2.1.2.1 brings the discussion about the challenges this research may face in
its development.

2.1.2.1 Fault Tolerance Challenges

Building a portable and implementation-independent3 library to provide FT to MPI
requires facing many challenges. For instance, depending on the MPI implementation, the
behavior in the presence of failures may change and the available means to detect failures
and recover from them may differ. These topics are elaborated below, and additional tests
and discussions are made in Section 6.

Failure impact: To provide FT to MPI applications, one needs to determine the default
behavior of each implementation when failure happens. The default behavior of the
evaluated MPI implementations is to abort the execution of the whole MPI program (all
processes) when any of the processes finishes prematurely. However, some implementations
2 Available at:<https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/

mpi-library.html#gs.3lcs0t>
3 In this text implementation refers to the MPI implementations and not to OCFTL itself.

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html#gs.3lcs0t
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/mpi-library.html#gs.3lcs0t
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provide specific runtime flags that disable this default behavior. These flags4 are essential
when building a user-level library.

Error Handling: MPI implementations also offer the option to associate error handling
objects with MPI communicators. By default, there are two options, MPI_ERRORS_ARE_-
FATAL and MPI_ERRORS_RETURN. The former aborts the program whenever an error occurs,
while the latter returns the error (FORUM, 2015). The specification also allows users to
create their callback functions and bind them to error handling objects. Thus, whenever
an error occurs, a callback is made, allowing users to capture and handle it. Indeed,
OCFTL employs error handling objects and recovery flags to provide an implementation-
independent fault-tolerance environment for MPI applications.

Failure Detection: This consists of how the system will detect failures, which is usually
accomplished by employing some node monitoring. For example, MPICH looks at TCP/IP
sockets to detected failures (BOSILCA et al., 2002) while ULFM employs a heartbeat
ring (BLAND et al., 2013) or OS signal monitoring (ZHONG et al., 2019).

Robust failure detection mechanisms are also needed to face recurrent problems.
One of these problems is falsely detected failures (or simply false-positive failures). False
positives might happen when a process temporarily stops sending alive notifications (e.g.,
due to a temporary overload) and, after some time, restarts behaving as expected. Other
common problems include system noise, failure-detection overheads, detection time (time
taken the detect a failure after it occurs), failure propagation (how failures notifications
will be propagated to other processes, so every process knows about every failure), and
locality (when a process monitors another process that is also located on the same node).

Impact Mitigation: This refers to the ability to reduce the impact of the failures in the
system. There are two main categories of approaches to FT, reactive, and proactive. In the
first case, failures are handled after they occur, in the second case, the system will try to
avoid possible failures (HASAN; GORAYA, 2018).

There are many approaches to each category. For proactive fault tolerance, for
example, there are Self-Healing, when the system can periodically supervise and recover
from erroneous states; Pre-emptive migration, when the computation is moved from
suspicious nodes; and, System Rejuvenation, when the system restarts periodically (from
backups, which can be partial or totally) to make execution fresh again (HASAN; GORAYA,
2018). Some examples of reactive fault tolerance are Checkpoint restart, which consists of
periodically saving execution states, and in case of failures, the execution is restarted from
the saved point; Migration, which consists in moving the computation to another node
(after the failure occurrence, in contrast to the preemptive migration); and Replication,
which consists in running multiple instances of the same tasks, in case of one fails, the
4 Examples of flags are "–enable-recovery" for Open MPI and "–disable-auto-cleanup" for MPICH and

MVAPICH.
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other can continue the execution (HASAN; GORAYA, 2018).

2.2 Fault Tolerance
This section discusses the concepts of FT used in this research. For failure detection,

OCFTL uses the heartbeat algorithm. Section 2.2.1 explains how it works and how the
internal FT broadcast is used. For impact mitigation, this research aims at reactive
approaches. Focusing on checkpoint restart, discussed in Section 2.2.2. This approach
composes the current failure mitigation system for OCFTL, which is planned to be
extended with the use of Replication, which is briefly discussed in Section 2.2.3.

2.2.1 Heartbeat and Internal Broadcast

Heartbeat is one of the ways to detect failures. When using the heartbeat, processes
exchange beat messages with other processes. Normally the processes are organized in a
ring topology, so every processes will be an emitter (sending beat messages to the next
process in the ring) and will be also an observer (listening for beat messages from the
previous process in the ring) (BOSILCA et al., 2018). This is present in ULFM (BOSILCA
et al., 2018) and also in another work that uses a heartbeat to control failures on daemon
processes5 (ZHONG et al., 2019).

The heartbeat has two main properties: the period, which is the interval time
between beat messages, and the timeout, which is the minimum amount of time a
process will wait since the last beat was received before considering the emitter as failed,
this is reseted when a beat is received. The heartbeat algorithm is composed of few
tasks (BOSILCA et al., 2018):

Task 1 Occurs every period. The emitter sends a beat to the observer

Task 2 Occurs when a beat is received. The timeout is reseted.

Task 3 Occurs when the timeout is reached. The emitter is considered dead, a new emitter
is set, a NewObserver notification is sent to the new emitter, and the information
is propagated to the other processes through a FT broadcast algorithm.

Task 4 Occurs when a NewObserver notification is received. The observer is redefined to
the new observer, and a beat is sent immediately.

Task 5 Occurs when a broadcast is received. If is the first time that broadcast is received,
replicates the broadcast.

5 In this case, daemon processes are special processes that monitor some of the application processes.
Application failures will be detected by the daemon process that is watching the failed process, while
the heartbeat will detect failures in the daemon processes.
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These properties and these events compose a complete heartbeat. Another essential
topic to discuss is the FT broadcast. The broadcast is essential since the failure needs to
be propagated across all processes. As a fault tolerance library, this broadcast needs to be
fault-tolerant, first, because there will be failed processes in the set of processes (so, for
MPI, the broadcast can not be used). Second, there is the possibility of some broadcast
messages to be lost so that the broadcast will not be completed.

There are few options of FT broadcast algorithms. First, the hyper-cube broad-
cast algorithm (HBA), in which the starter process sends the broadcast for k processes
forward and k processes backward in the ring with k = blog2(N)c, and N the number of
processes) (BOSILCA et al., 2018). Circulant graphs, like binomial graphs (BMG), are a
good option to achieve a balance between propagation delay (time for the propagation
to achieve all processes) and scalability (number of exchanged messages). In BMG, the
broadcast is sent to processes following powers of two (i.e., a process with rank k sends
messages to processes with ranks k+20, k+21, k+22, ...), forward and backward in the ring.
This approach creates redundant messages since a process can be selected more than once
(one time forward and backward in the ring) (ZHONG et al., 2019). This research aims to
improve the FT broadcast algorithm proposing a new way to do it. Further discussion is
made in Section 4.2.

2.2.2 Checkpointing

Checkpointing (or Checkpoint/restart) is a powerful fault tolerance technique that
saves a snapshot of the program to stable and reliable storages (KOREN; KRISHNA,
2020).

Traditionally, checkpoints are divided into certain levels according to their manage-
ment. At the kernel-level (or Operating System), checkpoints are taken at the operating sys-
tem level, where the application does not take part in the checkpointing process (KOREN;
KRISHNA, 2020; PLANK, 1997). Some examples are BLCR and DMTCP (HARGROVE;
DUELL, 2006; ANSEL; ARYA; COOPERMAN, 2009). At the user-level (transparent to
the user), checkpointing is done by the application itself, normally achieved by linking
a dynamic library to the application (KOREN; KRISHNA, 2020; PLANK, 1997), for
example, CPPC (RODRÍGUEZ et al., 2010). Finally, the application-level (not transparent
to the user), is when the checkpoint explicitly needs application interaction (i.e: the
application needs to provide functions to save/load the checkpoints) (KOREN; KRISHNA,
2020; PLANK, 1997). SCR, Veloc and FTI (MOODY et al., 2010; NICOLAE et al., 2019;
BAUTISTA-GOMEZ et al., 2011) are examples in this category. Each type has it own
pros and cons. In one hand, as near the approach is to the kernel-level, more transpar-
ent it is to the application, so it is not needed for the application to interact with the
checkpointing library, at the same time, it has less control of checkpointing and what is
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being checkpointed. In the other hand, as near as the approach is to the application-level,
the application has more control of what is being checkpointed and how checkpoints are
taken, but, more interaction is needed, which means that the application developer needs
to know how and what to do to provide checkpointing.

There is also a variety of classifications for checkpoint/restart techniques. For
example, some libraries are called multi-level, like the SCR, Veloc, and FTI, which allows
the checkpoint to be saved in different ways (e.g., only local, at the same machine as
the application process; or on distributed file-systems; or replicating it on a neighbor
node) (NICOLAE et al., 2019). Further definitions of checkpointing are still possible, a
checkpoint can be: coordinated, where checkpointing is made with all processes synchronized,
ensuring global consistency at the cost of scalability; uncoordinated, when the synchronism
is not needed, improving the scalability; and hierarchical, when processes are divided into
groups, in which for each group scope, there is the coordinated approach, and for the
inter-groups procedures, the uncoordinated approach. Finally, there is also message logging,
which consists of saving the messages to reproduce non-deterministic events (DONGARRA;
HERAULT; ROBERT, 2015).

Another essential characteristic of checkpointing relies on the saving process. Some
checkpoint libraries checkpoint the whole program memory (full) while others only save
the changed parts of the memory (incremental) (NICOLAE et al., 2019).

Moreover, the overhead (which is the extra time applications spend when creating
a checkpoint) and the latency (which represents the time necessary to save a checkpoint)
are also two crucial concepts that come with checkpointing (KOREN; KRISHNA, 2020).
When employing a checkpoint, a checkpointing interval needs to be defined. Since check-
pointing can incur significant overhead and latency, it is crucial to make checkpoints at
certain times to avoid unnecessary overhead to the program (e.g., small checkpointing
interval in systems with higher MTBF means that many checkpoints will be taken before
a failure occurs, ultimately leading to increased overheads). Young made a first-order
approximation to calculate the optimal checkpoint interval (θ) that takes into account
the cost (δ) of the checkpoint (time to write it) and the MTTI (M) (Mean time to
interruption)(θ =

√
2δM) (YOUNG, 1974). More recent works tried to achieve even more

accurate approximations, for example, a conditional calculation based on the comparison
between the cost and MTTI (DALY, 2006), or by considering extra inputs to the calcu-
lation, such as a value that represents the fraction of lost work, such as done by Lazy
checkpointing (TIWARI; GUPTA; VAZHKUDAI, 2014).

Section 4.3.1 discusses which type of checkpoint will be used in this project.
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2.2.3 Replication

Replication (sometimes called redundancy) can be divided into two main categories,
space and time replication. The first occurs when the component is replicated, be the
hardware, the software, or information. The second occurs when the computation is
repeated, and the result is compared with the result of previous executions (DUBROVA,
2013). This work aims at the space type of replication, more specifically, in the hardware
and software replication.

There are two significant classifications to replication: it can be active when every
instance of the computation starts together, and the execution will succeed if at least one
of them completes successfully, or passive, when the other instances of the job do not start
at the same time as the primary instance. In this case, the replica will start as soon as the
main instance was declared failed. In this research, it is planned to employ space active
replication. Further discussions are made in Section 4.3.2.

2.3 Related Work

Fault tolerance for MPI is a frequent topic of research interest with various works,
some relying on existing MPI implementations while others provide new MPI implemen-
tations with FT. Also, some works employ new FT features over existing FT features
(usually uses other MPI FT implementations as a base), while others try to employ initial
FT (not complete solutions).

One of the commonly used MPI implementations, Open MPI, for example, refers
users that need FT to another implementation, ULFM (BLAND et al., 2013), as its main FT
approach6. On the other hand, another commonly used implementation, MPICH, includes
limited support to FT in the vanilla implementation for TCP-based communications7, in
which the failure detection occurs when MPICH detects that a TCP socket between two
processes broke (BUNTINAS et al., 2008). However, it is unclear what behavior can be
expected on other configurations such as Infiniband or shared memory.

This Section divides the related work into two subsections. Section 2.3.1 visits the
works that use an MPI base implementation or an MPI implementation with some FT
employed. While Section 2.3.2 reviews the works that propose new MPI implementation
with FT addition.

6 <https://www.open-mpi.org/faq/?category=ft#ft-future>
7 <https://wiki.mpich.org/mpich/index.php/Fault_Tolerance>

https://www.open-mpi.org/faq/?category=ft#ft-future
https://wiki.mpich.org/mpich/index.php/Fault_Tolerance
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2.3.1 FT Proposals Based on Existing MPI Implementations

This subsection revises related works that propose additions to existing MPI
implementations.

ULFM (BLAND et al., 2013) is proposed as an extension to Open MPI. Their
authors propose functions that help the user to perform process failure control (Revoke,
Shrink, Agree, Failure_Ack, Failure_Get_Acked). Those functions allow users to
invalidate and shrink (alter the processes in a communicator, so it only contains alive
processes) communicators, agree to something (e.g., a flag), and acknowledge that a failure
happened. The heartbeat algorithm uses a ring topology in which processes are sequentially
distributed. Each process is an observer of the previous process on the ring, and an
emitter to the following process. The failure propagation algorithm, on the other hand,
uses a hypercube-like topology (BOSILCA et al., 2018). A more recent proposal for failure
detection (ZHONG et al., 2019) also uses a heartbeat. However, it employs a Binomial
Graph (BMG) topology for failure propagation. Similar to these two approaches, OCFTL
also uses a heartbeat mechanism, although it does not employ any other detection system
such as discussed by Zhong (e.g., OS Signals). This lean OCTFL’s mechanism makes
our algorithm simpler and allows us to use a proven and scalable peer-to-peer topology
for failure propagation based on Chord (STOICA et al., 2001). Chord is a distributed
lookup protocol, which maps keys to nodes, and retrieve then, keeping the operations at
O(logN) (STOICA et al., 2001) (further information of chord-like broadcasts are found
in Section 4.2). ULFM is one of the most significant efforts to fault tolerance for MPI
nowadays, although it does not accomplish one of the objectives of the OmpCluster that
is being portable.

MPI/FT is a fault tolerance approach that uses MPI/Pro 1.51 (older distribution of
MPI standard 1.2). MPI/FT provides three types of middleware to MPI, managing redun-
dancy and checkpointing across the middlewares. It employs different kinds of heartbeats
to provides failure detection: internal, at the implementation level, where the heartbeat is
done depending on the network backend employed; or external, at the application level,
where a coordinator listens to heartbeats of the other ranks. It also employs recovering
models (a process will replace the failed in two ways, with or without synchronization with
the other processes, it also employs coordinated checkpointing) (BATCHU et al., 2004).

Reinit++ (GEORGAKOUDIS; GUO; LAGUNA, 2020) is also an extension to Open
MPI. Relying on simplicity, Reinit++ employs only a few additional data structures and a
single new function (MPI_Reinit) which allows recovery and restart after failures. Reinit++
authors claim improvements over ULFM and discuss a global recovery system (restarting
the entire application). Reinit++’s failure detection mechanism is based on a root node
that monitors some daemon processes that, in turn, monitor application MPI processes. In
addition to the fact that OCFTL does not rely on a specific MPI implementation, OCFTL
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focuses on local recovery and provides other functions like communicator shrinkage.

Leveraging an older LA-MPI (later migrated to Open MPI), there is a similar
proposal for a fault tolerance library. It features a ring-based failure detector, automatic
recovery, and DLCKPT (disk-less checkpointing) system. Different from the purpose of
this research, it relies on the LA-MPI implementation, implemented as an extension to
it (LU, 2005).

Some other works rely on the existing FT approaches. LFLR, for example, uses
ULFM to allow recovery after failures, and in stark contrast to Reinit++, LFLR deals
only with local recovery; in other words, it only deals with the restart of the failed
component (TERANISHI; HEROUX, 2014). In this sense, LFLR is closer to OCFTL since
its main proposal is to provide local recovery.

On top of LAM/MPI (also a predecessor of Open MPI) (LOUCA et al., 2000)
MPI-FT employs failure detection by an O.S. script that monitors the MPI processes, and
an MPI process to observe the script. It employs recovery in two ways: by spawning new
processes; or by creating different processes at the start of the program, which will replace
failed nodes.

Also, on top of ULFM, Fenix is a proposal that uses ULFM functions to support
failure detection and process recovery (GAMELL et al., 2014). Additionally, Fenix supports
different types of checkpoints (implicit, asynchronous, coordinated, and selective). Contrary
to Fenix, OCFTL does not use additional MPI FT libraries for detection and proposes
extra features like notification and gathering state functions and MPI wrappers.

A hybrid fault tolerance approach was proposed to take into account failures in the
EasyGrid middleware (a framework that provides process management for MPI, easing
the creation of grid-type applications) using checkpointing and message logs, as well as
self-healing properties (SILVA; REBELLO, 2011). Built on top of LAM/MPI (predecessor
of Open MPI) and top of the EasyGrid framework (since the EasyGrid provides process
management), the authors use those tools to detect and recover from failures. In this sense,
OCFTL tends to be more generic than EasyGrid, providing an FT library with more
compatibility (any MPI-compliant implementation) as well as not relying on another tool.

2.3.2 FT Proposals Based on New MPI Implementations

Instead of proposing modifications or wrappers on existing MPI implementations,
some works try to provide new MPI implementations with FT.

In the past, FT usually was employed providing new MPI implementations. CoCheck
is a facility for checkpointing/restart for MPI. It is also transparent to the application.
CoCheck was also integrated to the tuMPI (Technische Universitat Munchen MPI) (STELL-
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NER, 1996), a new MPI FT implementation that was based on the first version of
MPICH (BRIDGES et al., 1995).

FT-MPI was another try of providing an MPI fault-tolerant implementation, which
implements the MPI-2 standard partially. It extended the MPI standard with some FT
definitions, like communicator states. FT-MPI improves the communicator management
in case of failures with new functions, like SHRINK or ABORT, although it is not entirely
explicit, the failure detection is achieved with OS support (FAGG; DONGARRA, 2000).

Starfish MPI was an MPI implementation, MPI-2 compliant, which employs check-
pointing and automatic recovery for MPI applications (AGBARIA; FRIEDMAN, 2003).

LA-MPI was an MPI implementation developed by the Los Alamos National
Laboratory. It implemented some of the MPI standard 1.2 and 2 functions and dealt
with fault tolerance. The focus of the work on network fault tolerance and is designed
to improve the messaging interface while taking into account possible faults related to
network communication, for example, message losses (AULWES et al., 2004).

MPICH-V is an MPI implementation that provides a multi-protocol approach,
which proposes different approaches using message logging and checkpointing to deal
with fault tolerance. MPICH detects when a node disconnects from the network, this
way detecting a failure. MPICH is still very a used and maintained MPI implementation
nowadays and is one of the implementations explored in this work (BOUTEILLER et al.,
2006).

MPI Stages (SULTANA et al., 2018) is a brand-new implementation (also known as
ExaMPI). MPI stages, however, offers only basic MPI functionality as well as checkpoints.
The paper does not elaborate on how its failure detection and propagation system works.
Further research by direct inspection of its source code would be needed. OCFTL, on the
other hand, is based on the MPI specification and can (and should) therefore be used with
any MPI-compliant implementation.

Compared to this work, creating a new implementation can be very complex. MPI’s
specification is large (and growing) so many works, such as MPI stages, are not fully
specification-compliant. Moreover, many such endeavors are outdated or abandoned, such
as tuMPI (CoCheck), or the creator’s group migrated to newer projects. For instance,
LA-MPI’s group directed their efforts to Open MPI, and FT-MPI’s group migrated their
efforts to ULFM.

In sequence, Chapter 3 outlines the details of OmpCluster that are necessary to
understand this research context, which is discussed in Chapter 4 and Chapter 5.
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3 OmpCluster

This Chapter discusses OmpCluster’s1 architecture. Section 3.1 explains how Omp-
Cluster uses OpenMP and MPI to provide a distributed way to execute OpenMP programs.
Section 3.2 brings the initial fault tolerance discussion related to OmpCluster.

OmpCluster is a project that aims at easing scientific programming for HPC
clusters by leveraging OpenMP in the LLVM compiler infrastructure. The basic idea of
OmpCluster is to define a new device to offload computation in the omptarget library.
The tasks generated by the OpenMP will be distributed to the OmpCluster’s devices. This
devices are another processes based on cluster or cloud computing. The computation will
be distributed across various computing nodes, which is achieved by employing MPI in
the OmpCluster’s device. This procedure will be further explained in Section 3.1.

In OmpCluster, there are several research areas, there are studies of OpenMP
target applications tracing, benchmarking, scheduling algorithms among other areas. The
objective of this work is to provide resilience to OmpCluster. To understand the context
of research inside the OmpCluster, this chapter focuses on OmpCluster’s architecture.
Later in Chapter 4, the proposed fault tolerance library will be described, and lastly, in
Chapter 5, the integration between the proposed library and the OmpCluster will be
discussed.

Figure 1 shows an example for using OmpCluster. The application execution flow
is as follows: from an OpenMP program, the OpenMP runtime system creates the tasks
previously described by the programmer using OpenMP directives. OpenMP will use these
tasks to parallelize the program. This procedure creates a Directed Acyclic Graph (DAG)
that models the dependencies between the tasks. After, it schedules and distributes the
tasks across the computing nodes (CPU or CPU-GPU nodes) using MPI. As soon as the
execution of these tasks completes, the final results are sent back to the main program.
The task execution is controlled by an event system, in which, all the communication
is done using MPI. This process only requires from the final user of OmpCluster (i.e.,
scientific researchers from other areas) the knowledge of parallelization using OpenMP,
which is much easier than other approaches.

Concerning this fault tolerance work, as seen in Figure 1, OCFTL is based on
the part of the OmpCluster that involves MPI. OCFTL is based on MPI to detect and
propagate failures. This representation is a simplified version of the OmpCluster workflow.
So, based on the Figure, the library will provide resilience to the distributed part of the
OmpCluster. Further discussions about the OCFTL’s scope are made in Section 3.2.
1 Site project: <https://ompcluster.gitlab.io/>

https://ompcluster.gitlab.io/
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Figure 1 – Flow of the parallelization process.
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int main() {

 float N = 5.0, M = 5.0;

 int i = 1, j = 1;

 #pragma omp parallel

 #pragma omp single

 for (int k = 0; k < 3; k++) {

   #pragma omp target depend(inout:N) \

   map(tofrom:N, i) nowait

     N *= i++;

   #pragma omp target depend(inout:M) \

           map(tofrom:M, j) nowait

     M /= j++;

 }

 printf("N value = %f || M value = %f\n", 

N, M);

 return 0;

}
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OCFTL aims to guarantee that the program can complete with success in the pres-
ence of transient or permanent failures. In particular, OmpCluster aims to be compatible
with multiple types of systems and MPI distributions, so the fault tolerance library should
follow this requisite.

3.1 Architecture
This Section discusses OmpCluster’s architecture and all the concepts that will be

necessary to follow the remaining chapters.

OpenMP: Section 2.1.1 discussed the basics of OpenMP. Here, it will be described how
OmpCluster uses OpenMP to offload tasks to distributed computing nodes. To do that,
OmpCluster is employs the target part of OpenMP, this feature is used to offload the
execution to other devices, which can be, for example, a GPU. In OmpCluster’s case, a
device is another process that can run in another node of a cluster or cloud.

OmpTarget: In the LLVM OpenMP infrastructure, the omptarget library is focused on
the targets (also called devices), which are specific devices to which the computation
can be offloaded. Normally, OpenMP will distribute its parallelization through the CPU
threads in a regular parallelization. When using targets, OpenMP can distribute the
parallelization through other devices, like GPUs (Graphics Processing Units). In this
library, the execution process of OpenMP is divided into three parts. The first part is the
source. In this part, the application source code is translated to OpenMP code, and this
code will be executing the program through the OpenMP implementation (the OpenMP
tasks will be created here). The second part is the interface implementation, in this
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part, an interface is implemented between the source and target implementation part.
This interface is not aware of specific devices that will be implemented, and it is responsible
for translating the execution to the devices and features that are common to the devices
(e.g., scheduling). Finally, the third part is called target implementation, at this point,
the implementation is directed to a specific device that is responsible for translating the
offloading process to the target platform and executing the offloaded code.

Figure 2 – Representation of OmpCluster architecture inside OpenMP.
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Figure 2 shows how that architecture works in the OmpCluster. Two domains can
be observed, the OpenMP, which includes everything, and the OmpTarget, which includes
the Interface implementation and Target implementation. In the first domain, there
is the application source code which is oriented by #pragma omp directives (the target
clause makes OpenMP offloads the computation) and the code generation and execution,
which includes all OpenMP tasks. In the second domain, there are two subdivisions.
The first is the interface implementation (in green), which will be executed by the
number of threads defined by the omp thread number configuration2 at the host process.
Furthermore, the Target Implementation (in blue), which will be the only thing the
worker processes will execute but is also present on the host.

As seen in Figure 2, a major part of OmpCluster implementation is on the Omp-
Target (few changes have been made to the source part to provide OmpTarget some
information, mainly about the OpenMP task graph). In the interface implementation
part, will reside code related to scheduling and other non-MPI codes (e.g., FT handling
and notifications), while the related MPI implementations (e.g., the FT functions im-
plementation, event system codes) will be implemented in the target implementation
part. OmpCluster proposes a new type of device, called MPI Plugin. The idea is to use
2 It is important to differentiate the omp thread number from the MPI number of processes. In the

OmpCluster, there will be omp thread number threads running on the head process. Moreover, there
will be n processes running the program, which the MPI configuration defines n.
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MPI to distribute the target tasks created by OpenMP to different computing nodes (e.g.,
distributing execution to several cluster nodes). This MPI Plugin has two jobs; the first
MPI process (rank 0, the head process) controls the core functions to distribute the tasks
generated by OpenMP, while the remaining processes control the execution of the tasks in
the computing nodes. In the same figure, highlighted in red, the inclusions of this work
are shown. The FT tools are implemented at the target implementation component
(described in Chapter 4), and the integration between FT tools and OmpCluster resides
at the Interface implementation component (described in Chapter 5).

Interface implementation: The interface is the core of OmpTarget, it communicates
with the OpenMP source and the target implementation. During the program execution,
when a target task is dispatched to be executed (by the OpenMP runtime), a function
will be called on the OmpTarget library. This task can be related to computation or data
management. Each function will be redirected as a set of events that compose the OpenMP
task. Since OmpCluster is based on distributed computing, if the process that will execute
the task does not have the necessary data, the interface will forward it. Usually, if the task
needs data forwarding, a set of allocation, data submission (forwarding), and retrieving
will be done.

The interface is also responsible for the scheduling. During the program execution,
the OpenMP runtime will manage the tasks (including the target tasks) based on their
dependencies, dispatching the ready target tasks (with no more dependencies) to the
OmpTarget library. However, inside the OmpTarget library, all target tasks are scheduled
before the execution (currently, a Round-Robin schedule is used, but the HEFT scheduling
is being implemented). When a full target task graph is complete (after OpenMP finishes
processing a parallel region), the scheduler acquires a copy of the graph and pre-schedule
all tasks. As OpenMP’s runtime dispatches the target task to the OmpTarget library, the
library will check the schedule and direct the execution of the task to the scheduled device.

Another job done in the interface is data management, where all the data is
mapped in the interface. This map is used to control the data forwarding, and to manage
checkpoints.

Finally, most of the fault tolerance handling is done in the interface. The fault
tolerance notifications will be received in the interface, the checkpoint and task re-execution
are also managed in the interface. Further discussions about this integration between
OmpTarget and fault tolerance are present in Chapter 5.

Target implementation: Target implementation: For the target implementation, MPI
is used, so the OmpCluster device is called MPI Plugin. An event system implements the
device. The event system defines events for every necessary operation to execute the target
tasks. There are events related to data (alloc, delete, submit, retrieve, forward), related to
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execution (execute), related to control (exit), and related to fault tolerance (checkpoint,
save pointers, recovery). Figure 3 exemplifies how a target task from the application of
Figure 1 is translated to events in the event system. The block of code represents the actual
OpenMP code that will generate tasks with ID equal to 32, 34, and 37. Each one of those
tasks will generate the events presented in the Figure. Since the code maps two variables
on the target (map(to:...)), it will generate two alloc events (allocating one region of
memory for each variable), followed by the two submit events (send the two variables
values to the target). When the target has all the mapped data, the computation is done
in the execute event. After the execution, since the code maps the two variables from the
target (map(from:...)), two retrieve events will be generated, retrieving updated values.
Finally, two delete events will be generated, freeing the previously allocated memory on
the target.

Figure 3 – Example of events generated by an OmpTarget target task.
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Every communication operation on the event system is made using MPI. In Om-
pCluster, the MPI process with rank 0 is defined as the head process, while the other
ones are worker nodes. When a program is compiled with the OmpCluster, the resulting
binary will contain both the interface implementation and target implementation.
The host process will execute both parts while the worker processes will execute only the
target implementation part.

In the target implementation there is also OCFTL. In which, there will be one
instance of the fault tolerance object for each MPI process. The complete description of
the OCFTL is present in Chapter 4.

3.2 Fault Tolerance
Before diving into the fault tolerance library, it is important to define the FT

domains. A domain is a context inside the architecture the defines the scope of fault
tolerance. Concerning OpenMP and OmpCluster, there are two domains. The first domain
is called inner domain, which represents the domain of this work. In the inner domain
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the fault tolerance is provided at the same level as the target implementation and
interface implementation, which means that the library is limited to that scope. At
this level, the library should detect, survive and re-execute target tasks (this means the
application can survive from failures in the worker processes but not on the head process
since it is reponsible for the OpenMP program execution). The second domain is called
outer domain, which represents the domain closer to the OpenMP code generation and
task control. The outer domain is not the focus of this work, but it is future work. Within
the outer domain the fault tolerance methods should be able to survive failures on the
head processes, as well as re-executing implicit tasks (the ones that are not redirected to the
OmpTarget). Figure 4 shows the location of two domains in the OmpCluster architecture.
The red highlighted structures in the inner domain are the subjects of this research, while
the remaining structures in the outer domain are objects of future studies, in which, for
example, the use of OpenMP #pragma directives to control fault tolerance (specifying
which fault tolerance approach to use, or defining a fault tolerance property), and outer
FT solutions like the replication of the host process could be employed.

Figure 4 – Division of Fault Tolerance domains in OmpCluster.
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4 OCFTL — OmpCluster Fault Tolerance Li-
brary

This chapter discusses the implementation of OCFTL. Section 4.1 describes the
basics of OCFTL. Section 4.2 outlines the design and rationale behind the failure detection
mechanisms of the library. Section 4.3 describes the failure mitigation mechanisms. Lastly,
Section 4.4 brings the extra features of the fault tolerance library to the discussion.

4.1 Fault Tolerance Library

As one of the goals of the project described in Chapter 3, the runtime system can
not rely on a specific MPI implementation. So, OCFTL has to provide FT mechanisms
compatible with any specification-compliant MPI implementation. However, in this work,
the discussions will be limited to Open MPI and MPICH since they are very commonly
used and are the base for other MPI implementations, like MVAPICH and IntelMPI.

There are two main approaches to fault tolerance in MPI: either providing fault
tolerance at the MPI implementation level, such as done by ULFM (BLAND et al.,
2013) for example, or at the MPI user-level. In the first case, there is more control of
the MPI runtime to deal with failures as one can access internal states of MPI. At the
same time, the major drawback is the necessity of making the fault tolerance compatible
with multiple different MPI distributions since every distribution could be implemented
differently. The second one restricts the library to the use of MPI functions presented in
the specification (FORUM, 2015). On the one hand, it makes compatibility easier since
every MPI distribution should follow the standard. On the other hand, it has the drawback
of necessarily employing whatever communication mechanism the MPI implementation
uses as its backend.

In this work, the second approach was chosen. Using user-level MPI functions
makes the library easier to maintain and update as new MPI standards are released,
also, the documentation about them is extensive, as well as very discussed by the MPI
community, and not less important, the compatibility is guaranteed across any MPI-
compliant implementation. The only mandatory MPI configurations OCFTL needs are
the MPI_THREAD_MULTIPLE support enabled (since the OCFTL runs over extra threads)
and the runtime recovery flags (e.g., –enable-recovery for MPICH and –disable-auto-
cleanup for Open MPI), since by default the MPI implementations aborts the application
if a process terminates prematurely. OCFTL is implemented as a C++ class (so it focuses
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only on C++). In the OmpCluster architecture, the implementation of OCFTL tools is
present at the target implementation part of OmpCluster, in the inner domain of FT,
as seen highlighted in Figure 5. Since OCFTL is a C++ class, one instance of the OCFTL
object will be created for each MPI process (the head and worker processes of OmpCluster).
Other threads will be launched for any extra tool OCFTL needs, like the heartbeat of the
checkpoint library. These extra threads share the same MPI initialization done by the main
MPI process, which means that have access to the same communicators and communicate
as if were the main MPI process. There is also a C++ class in the OmpTarget interface
implementation part of OmpCluster, which handles the notification of FT, controlling the
failure handling for scheduling and task restarting, which is further discussed in Chapter 5.

Although this work focuses on OCFTL in OmpCluster, the library can be used as
a stand-alone library in other applications. To do so, one just need to compile OCFTL as
a static library and link the library to the application. This is the procedure done for the
experimental evaluation of OCFTL with MPI discussed in Sections 6.3.3, 6.3.4 and 6.3.2.

Figure 5 – Location of fault tolerance tools inside OmpTarget.
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In OmpCluster, OCFTL aims to provide FT by aggregating different tools, which
are divided into three groups, as shown in Figure 6. From the bottom to the top, the
first group represents the failure identification tool (a heartbeat in OCFTL), the base
for FT, which will be discussed in Section 4.2. The second group consists of the failure
impact mitigation, which aims to mitigate the impact of failures (using checkpointing and
replication) after they are detected (since restarting the entire program from the beginning
after failures is not intended). This is discussed in Section 4.3. The top group is composed
of runtime support features. These are functionalities that will help OCFTL execution and
integration with other parts of OmpCluster, like the event system (using the notification
and state gathering systems), as well as providing extra FT tools (communicator shrinkage
and MPI wrappers), these features are discussed in Section 4.4. Appendix D describes in
detail how the configuration of OCFTL can be achieved.
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Figure 6 – Group division of fault tolerance tools in OmpCluster.
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4.2 Failure Detection Mechanism

Failure detection is one of the essential features of fault tolerance. OCFTL employs
a mechanism inspired by ULFM’s (BOSILCA et al., 2018). The algorithm was modified
to be compatible with OCFTL, working with user-level functions of MPI provided by all
specification compliant implementations. The detector features a ring-based heartbeat, in
which one process observes the previous neighbor and, when a failure occurs, propagates
the failure to the remaining processes, following the schemes presented in Section 2.2.1.
The features of the detection mechanism are described below.

The heartbeat: All the events are checked in a loop that occurs every pre-defined
configurable time step in a specific thread. Figure 7 shows the actions made in the main
loop: initially, the library checks if it is time to send a heartbeat; in the sequence, it checks
if a repair communicator process was started; following, it checks if an alive message was
received (if so, resetting the heartbeat timeout), also checking if the sender is the current
observed process (indicating a failure) or another process (indicating a false positive
failure); after, it checks if a new observer notification was received, which means the
previous observer failed and the process now haves a new observer; finally, the library
checks for broadcasts1.

Internal broadcast: An important part of the detection mechanism is failure propagation.
When a failure happens, every process has to know about that failure. Typically, a broadcast
algorithm is used to propagate the failures. A hypercube-based algorithm (HBA) (BOSILCA

1 Currently, the broadcast can be either an MPI communicator repair process (indicating that a
procedure of communicator repair was initialized); a false positive notification (adding a process that
was previously set as failed back to the ring); a failure notification (indicating that a process that
failed, where every other process will remove the failed one from the ring); or a checkpoint completion
notification (indicating that a checkpoint that was in progress finished).
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Figure 7 – Flowchart of the main loop decisions in the heartbeat thread.
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et al., 2018) and a binomial graph algorithm (BMG) (ZHONG et al., 2019) were previously
used. Those algorithms present important aspects, like the rapid propagation (in log2(N)
rounds, where N is the number of processes) and redundant messages, which are essential
for FT. OCFTL proposes the use of a Chord-like broadcast, which uses the idea of the
request key from the Chord algorithm (STOICA et al., 2001), also proposed in (EL-
ANSARY et al., 2003), but different of the original chord-broadcast algorithm, here we
keep the message redundancy, which is very important for FT. In this Chord-like broadcast,
each process s sends messages to every process r such that posr = (poss + 2i) mod N ,
where i goes from 0 to log2(N), and N is the size of the heartbeat ring, following the
example of Figure 8. Once per process, this procedure is done upon receiving the first
broadcast from another process, replicating the broadcast log2(N) + 1 times in total.

Additionally, the expected time to achieve a consistent state2 is log2(N) multiplied
by the main loop iteration time. This different broadcast aims to maintain efficiency (in
terms of FT, with redundant messages and rounds to complete the broadcast) and reduce
the number of needed messages to complete the broadcast compared to the HBA or BMG
algorithms. Section 6.3 brings a more thorough discussion and experimental evaluation of
the internal broadcast.

False-positive failures: Another difference from ULFM’s heartbeat is the false positive
failure detection addition. Meaning that when a process failure is detected but after a while,

2 The consistent state is defined as the time needed for every process to be notified about a failure.



4.2. Failure Detection Mechanism 27

Figure 8 – Chord like OCFTL broadcast. In this case, in round 0, 0 starts a broadcast
sending to 1, 2, and 4. Upon receiving the broadcast, in round 1, 1 sends to 2,
3, and 5; 2 sends to 3, 4, and 6; and 4 sends to 5, 6, and 0. Notice that when 0
receives the broadcast from 4 it will not send the message again. The process
stops when every process receives and replicates the message once.
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the process recovers (e.g., due to an intermittent network failure), the former observer will
capture the message and start a procedure to add it back to the ring. This is achieved using
the broadcast procedure discussed before. At an initial stage, to identify a false positive
occurrence, the process will be identified as a failed process, and all procedures related to
the failure will be made. Only so, the process heartbeat messages will be captured and the
process added to the ring again.

Initial position shuffling: Lastly, an initial procedure that shuffles the distribution
of the ranks between processes throughout the ring is made. This shuffling minimizes
the time needed to detect multiple failures on sequentially-ranked processes that, on a
non-randomized rank assignment mechanism, could be running on the same machine, rack,
or network. The random distribution of processes is a simple way to solve the problem
for most cases. The probability of consecutive ranks assigned to processes on the same
nodes decreases as the number of nodes increases. Considering a program is composed of T
processes distributing n processes over m machines. If this distribution is in blocks (ranks
0 to 4 on machine 1, rank 5 to 9 on machine 2, and so on), and considering the heartbeat
timeout (hbto). If a machine fails, the system will take one hbto to detect the first failure,
and another 2× hbto for each of the n− 1 remaining failed processes, totaling a timeout
of (2(n− 1) + 1)× hbto for detecting all failures. This timeout could be reduced to just
one hbto if the shuffle makes every MPI process on a machine or rack to be observed by a
process on another machine or rack. Since the ranks are uniformly distributed throughout
the ring, although the lower bound stated before cannot be guaranteed, the probability
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of a worst-case scenario decreases as the number of machines increases, as described by
Equation 4.1,

Pn = m
n−1∏
i=0

1
T − i

, (4.1)

where the probability (Pn) of having n consecutive processes in the ring is m machines
multiplied by the probability of the event, which follows 1

T
× · · · × 1

T−n+1 , with a total of
n terms in the product, where T is the number of total MPI processes and n represents
the number of processes of each machine. For example, if there is 10 processes for 5
machines (n = 2), P2 = 0.11, while having 50 processes for 5 machines (n = 10) results in
a P10 = 4× 10−8. For further discussion about the shuffling process see Section 6.3.4.

4.3 Failure Mitigation Mechanisms
Once OCFTl can identify and propagate failures, the next step is to reduce

the impact of failures in the application’s execution. Often this is achieved by using
checkpoint/restart and replications, which was explained in Section 2.2. In sequence, it is
described how OCFTL uses these approaches to mitigate failure in OmpCluster.

4.3.1 Checkpoint/Restart

Between the various checkpoint libraries options discussed in Section 2.2.2, choosing
a checkpointing library that offers the characteristics needed by OCFTL is necessary.
Working at the application level, allowing processes to have independent behaviors, which
for checkpointing means saving/loading without synchronization of the processes, commonly
referred to as uncoordinated checkpointing, are the major requirements. SCR, Veloc, and
FTI checkpointing libraries fulfill those requirements. We also considered developing our
own checkpointing library, which was discarded because of the time it would take and some
libraries already offer the features needed) were evaluated. To enable checkpointing in
OCFTL, Veloc (Very-Low Overhead Checkpointing) (NICOLAE et al., 2019) was chosen
since it best fits the requirements discussed, since the other restricts the checkpoint to be
coordinated only.

OCFTL provides an interface between OmpCluster’s runtime and Veloc, which
facilitates maintenance and, if needed, the complete exchange of the checkpointing library
(as the only location where Veloc is used is inside the fault tolerance library). This interface
also provides extra features, like checkpoint interval calculation (YOUNG, 1974) (based on
configurable MTBF and Write Speed values) and application notification. The integration
of the checkpointing and OmpCluster is made through the event system and in the
OmpTarget interface implementation part. The calls to procedures that execute Veloc
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operations (e.g., saving and loading buffers to/from checkpoints) are made by the event
system. The notification about checkpoints and decisions are handled in the OmpTarget
interface implementation part of OmpCluster since it is needed to restart tasks and
interact with the scheduler.

Checkpointing consists of two basic operations. The operations of saving check-
points and loading checkpoints. The following paragraphs explain how these operations
were designed to be used in OmpCluster.

Saving Checkpoints: When the moment of the next checkpoint is up, OCFTL notifies
the system to save a checkpoint. Upon receiving it, the execution of the tasks should be
stopped and the desired buffers should be marked to be saved. Veloc will save the buffers
locally, and after, send the checkpoint from the local to a persistent directory(e.g., in a
distributed file system). After the procedure is complete, the information about the saved
buffers is stored to be used in the loading procedure.

Loading Checkpoints: The load procedure for a checkpoint in OmpCluster starts when
a failure is detected. The OCFTL notifies the system of the failure, and the system looks
for failed tasks. Any task related to a failed task (be a dependency or dependent of the
failed task) which was already executed but not saved will be restarted. The tasks are
re-executed before the remaining tasks continue the program. This process avoids the
unnecessary overhead that would appear if restarting the entire graph from the last saved
checkpoint since many tasks will not depend on the failed tasks. Section 5.2.2.4 discusses
the details of how this procedure was implemented.

Figure 9 shows one example of the procedure explained above, the circles represent
tasks, and the edges represent the dependency between tasks. Green tasks (0, 1, 3, 10,
11, 13) already have their output saved in a checkpoint, white tasks (2, 4, 5, 12, 14, 15)
are tasks that were executed but not saved (will be saved in the next checkpoint), blue
tasks (6, 7, 16) are the currently running tasks, yellow tasks (8, 9, 18, 19) are not yet
scheduled tasks, and the red task (17) is a failed task. The procedure will look from task
17 for tasks with some dependency relation, stopping at the saved tasks and not scheduled
tasks (green and yellow circles). After finishing the search, it is found that tasks 12, 14,
and 15 were already finished, and task 16 has an indirect relationship with the failed task,
and task 17 that was the failed task, needs a restart.

4.3.2 Replication

Another common procedure to mitigate failure impact is the use of replication. Like
checkpointing, there are many ways to use replication. In OCFTL, the location of each
process (what node has the process) can be verified, and processes in different machines
can be selected for replicating. The replication is not synchronized to avoid overheads
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Figure 9 – Procedure of restarting an failed task using checkpointing. Green tasks mean
saved tasks, white means executed but not saved tasks, blue means currently
running tasks, yellow means not yet executed tasks and the red represents the
failed task. This graph shows a possible graph of execution in OmpCluster,
where tasks does not communicate with each other during the task execution,
only before or after.
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from synchronization, which could significantly impact the makespan of the application.
The replication is not implemented yet in the OmpCluster, but it is in the scope of future
works.

When selecting processes to execute tasks (in the scheduling process), the procedure
is as follows: the runtime chooses by pairs, and each process starts executing the tasks. If
one of the processes fails, the other can continue. If both of them fail, the task must be
re-executed (in the same way as checkpointing procedures). If one of the processes finishes
the execution, the replica can be canceled, and both processes are sent back to the process
poll. If only one process is available, there are two options, the first is to execute the tasks
without replication, and the second one is to mark the task, so next time a process is freed,
it will start to execute the marked task as a replication.

As said at the beginning of this Section, replication is not available yet in Omp-
Cluster. It is intended to be added in future OCFTL feature additions. It is explained here
since this research also visited the subject of using more than one approach to mitigate
failures.

4.4 OCFTL Runtime Support

Once OCFTL can detect and mitigate failures, a few features are implemented to
support the OCFTL usage and functionalities. Following, each one of the extra features is
described.
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4.4.1 Communicator Shrinkage

OCFTL works over MPI, and MPI provides optimized collective communications
between processes. Another consequence of failures is the invalidation of communicators.
Even in the presence of failures, MPI can still be used for peer-to-peer operations. However,
it will fail if collective operations are utilized since they need every communication process
to participate.

To tackle this problem, a repair function similar to MPI_Comm_Shrink (available
in ULFM (BLAND et al., 2013)) is implemented. When called, this function shrinks the
set of processes to contain only alive processes (as determined by the failure detection
mechanism described in Section 4.2). The shrinkage only completes successfully if all MPI
processes are synchronized, i.e., they have the same view of the whole system with regards
to which processes are alive or dead. If their view is not synchronized, the system is said
to be in an inconsistent state, which might be reached when a failure happens during the
propagation process performed by the library after the detection of a previous failure. In
that case, the consistent state will be reached after the end of the ongoing propagation
process.

The algorithm to shrink an invalid communicator is described in Figure 10. When
the library starts the procedure, it will check if the communicator is invalid (if it has a
failed process). If it is invalid, the library will check if every process agrees on the current
alive group of processes (if any process disagrees, the procedure will be canceled — this
is also discussed as a limitation in Section 6.4). If everyone agrees, a new communicator
containing only the group of alive processes will be created.

Figure 10 – Flowchart of communicator repair process.
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4.4.2 Notification Callbacks

A notification callback system was built to provide communication between OCFTL
and OmpCluster. These callback function notifies the OmpCluster about the FT events,
which currently are: Failure, False Positive, Checkpoint and Checkpoint Done. To
use the callback system, a function need to be bound to it, so, when a FT event list before
occurs, that function will be called. The bound function should have a specific procedure
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for each one of the possible notifications. In OmpCluster, this function is implemented in
the OmpTarget interface implementation part. In a stand-alone use of OCFTL, the
user should bind their functions to define what to do upon each notification. Each FT
notification type is explained in the following statements.

Failure: This notification comes with a parameter representing the failed process. When
this is received, the notification handler will add the process to a vector of failed pro-
cesses and will start the procedures of recovery as described in checkpointing/restart
(Section 4.3.1). The vector will be used to define which processes are available for the
scheduling of tasks.

False Positive: This notification also comes with a parameter representing the process
that came back to the working processes. Here, the process will be removed from the failed
processes vector and can be used to schedule tasks again.

Checkpoint: This notification warns the OmpTarget interface implementation part
that it is time to save a checkpoint. Upon receiving this notification, the handler will do
the procedure described in Section 4.3.1, in which it will look for the buffers that are in or
will be in use and will save them.

Checkpointing Done: This represents that the checkpoint is done completely. When
this notification is received, the handler will do the procedure described in Section 4.3.1,
in which the list of buffers used by the tasks in a restart procedure will be loaded.

4.4.3 Process and Communicator States

OCFTL employs gathering state functions that return the constantly updated
states of processes and MPI communicator. The state of a process can be ALIVE if it is
operating normally or DEAD if the process is not in operation. In contrast, the state of an
MPI communicator can be VALID if all processes in the communicator context are ALIVE,
or INVALID otherwise. Those functions are used in OmpCluster to check states in MPI
wrappers (discussed in Section 4.4.4). In a stand-alone use of OCFTL, the user could use
these functions to, for example, control scheduling.

The process state is used in some OmpCluster runtime procedures to confirm that
the other side of a point-to-point communication is ALIVE. Before MPI collective calls,
the communicator state is used to prevent the runtime from starting an MPI collective
operation without all processes ALIVE (which could lead to a deadlock). Currently, the
library does not employ a solution to failures between the communicator checking (returning
a valid communicator) and the collective communication. This is discussed in Section 6.4.
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4.4.4 MPI Wrappers

In addition to those features, another possibility to improve FT is the creation
of functions to wrap MPI operations. The main reason for wrapping MPI functions is
the possibility of deadlock if a side of the communication fails. Those wrappers would
give OCFTL better control of the flow of MPI operations since it could make pre and
post-processing for each operation. An example of pre-processing is to check the destination
or the communicator state, returning an error in case of an invalid communicator or a
dead process. As for post-processing, OCFTL could check if the error handling functions
reported any abnormalities.

To create wrappers in FT, OCFTL leverages the "-Wl,–wrap=FUNCTION" linker
option available in GCC and Clang compilers. This option permits it to create two
variations of FUNCTION symbol, one will be the "__real_FUNCTION(...)" and other will
be "__wrap_FUNCTION(...)". The first will be redirected to the original implementation
of FUNCTION, in this case, original MPI functions. The second will be redirected to a
custom implementation of the FUNCTION that OCFTL provides. When FUNCTION is called
(without the prefixes), the called function will be the one with the wrap prefix, permitting
to perform procedures before executing MPI calls without interfering with the regular use
of MPI functions.

For the OmpCluster’s case, the implementation was evaluated, looking for operations
that could lead to deadlock (if the other side of communication failed) so wrappers can
be implemented for them. Seven operations were identified: MPI_Wait, MPI_Test (used
as a loop condition), MPI_Barrier, MPI_Comm_free, MPI_Mprobe, MPI_Send, MPI_Recv.
Wrappers implementation and rationale are described below, and each implementation
algorithm is presented in Appendix A.

MPI_Wait: The problem with MPI_Wait is that the function only has a MPI_Request and
a MPI_Status objects as argument, in which it is not possible to identify the other side
of the communication. Knowing the other side of communication is essential to verify
both sides of the communication are alive. To avoid this problem OCFTL can not wrap
directly the MPI_Wait function, instead, when using MPI_Wait the program will finish and
warn the programmer to use a custom version of MPI_Wait. MPI_Iwait is a version of the
real function with an extra argument, the proc parameter. This parameter represents
the other side of an MPI communication, it can be the rank of another MPI process,
or ft::FT_MPI_COLLECTIVE if the operation is collective. If the proc parameter is equal
to ft::FT_WAIT_LEGACY the function will fall back to the legacy MPI_Wait. Algorithm 2
shows how MPI_Iwait works. First, OCFTL checks if FT is disabled or if there is no FT
object available, if so, it calls the original MPI_Wait. Then, the function implements a loop
that keeps checking the flag returned by MPI_Test function. Inside this loop, the status of
the MPI_Request and the state of the communicator or the process (represented by proc
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parameter) are checked. If the request is completed, it returns success, or and FT_ERROR
instead.

Algorithm 2 shows the custom MPI function that acts as an alternative to MPI_-
Wait. It is not a wrapper itself but acts like one. This function is typical, it represents any
other wrapper construction, which follows the same idea: If FT is disabled, it will switch
to the real implementation of the function, acting as normally would do without wrappers;
otherwise, it executes the wrappers procedures, which normally employs the check for
processes and communicator states. For this reason, the other wrappers implementation
are presented in the Appendix A.

Algorithm 2 – OCFTL’s custom function alternative to MPI_Iwait.

1 int MPI_Iwait(MPI_Request *request, MPI_Status *status, int proc) {
2 if (disable_ft || ft_handler == nullptr || proc == ft::FT_WAIT_LEGACY) {
3 return __real_MPI_Wait(request, status);
4 }
5 assertm((proc >= ft::FT_MPI_COLLECTIVE) && (proc < ft_handler->getSize()),
6 "Waiting for request with invalid rank participating.");
7 int test_flag = 0;
8 while (!test_flag) {
9 MPI_Test(request, &test_flag, status);

10 if (proc == ft::FT_MPI_COLLECTIVE) {
11 // If it is a collective call
12 if (ft_handler->getCommState() != ft::CommState::VALID) {
13 MPI_Request_free(request);
14 return ft::FT_ERROR;
15 }
16 } else {
17 // If it is a point-to-point call
18 if (ft_handler->getProcessState(proc) != ft::ProcessState::ALIVE) {
19 MPI_Request_free(request);
20 return ft::FT_ERROR;
21 }
22 }
23 }
24 return ft::FT_SUCCESS;
25 }

MPI_Test: This MPI function provides a flag determining if the associated MPI_Request
is finished or not. The flag is used as a condition in the event system to wait for all
event requests to be complete. In this case, if the MPI_Request can not be completed
because of a process failure, the loop would never be broken, and the program would
deadlock. As well as MPI_Wait, the MPI_Request and a MPI_Status does not provide the
information about the other side of the communication. Because of that, OCFTL wraps
the MPI_Test function warning about the use of the function in such case, redirecting to
use of the custom MPI_Itest function provided by OCFTL, this function is presented by
the Algorithm 5. As well as the MPI_Iwait, this new function uses the same arguments of
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the original MPI_Test with the addition of another argument (proc), which defines the
other side of the communication. This function first checks if FT is disabled or if there is
no FT object existent. If so, calls the original MPI_Test (one can also use proc equals to
ft::FT_TEST_LEGACY to fall back to the original implementation, if it is used in a different
way than the discussed). After, the function checks the MPI communicator is valid (if
proc equals to ft::FT_MPI_COLLECTIVE) or if the other process of the communication is
alive (if proc is a rank of a MPI process). If there is a problem with the communicator
or the other process, the function will return ft::FT_ERROR (which can be used to break
the loop). Otherwise, the library will call the original MPI_Test function the fill the flag
argument and at the end returns ft::FT_SUCCESS.

MPI_Barrier: Barrier is also another very common function with can cause deadlock.
Algorithm 7 shows the wrapper for MPI_Barrier. Same as for wait, an initial checking
is done, and then it is checked if the status of the communicator is valid. In sequence,
it calls the non-blocking variation of the MPI_Barrier and waits for its request. If the
request was not completed (or if the non-blocking version failed), OCFTL will try to
repair the communicator. If the new communicator is valid, OCFTL will try to execute
the non-blocking version (now in the new communicator) again. It is important to note
that this wrapper also uses the MPI_Iwait function described before.

MPI_Free_comm: This function is usually employed at the end of programs. It is a collective
function that would deadlock if running with failed processes. The wrapper for this function
is straightforward. If the communicator is VALID, it falls back to the real MPI_Free_comm
function. If it is not, it simply skips this function. Since this is a cleanup function, it would
not affect the application’s final result, although it would case some memory leak.

MPI_Mprobe: The Mprobe function is a point-to-point function that tests for a message,
and if there is a corresponding message, it will store the message in a specific object to be
later captured by an MPI_Mrecv function. The problem is that the Mprobe is a blocking
operation3. If it is testing a message from a dead process, it would be stuck waiting. To solve
the problem, OCFTL changes the Mprobe to a loop containing the non-blocking version of
it, the MPI_Improbe. Different from the other non-blocking functions in MPI, this version
does not attach a request. Instead, it simply checks if there is or not a corresponding
message. In the wrapper version, it is also checked if the corresponding source rank of the
message is DEAD. If it is, the wrapper will return an error.

MPI_Send: This Send operation is a blocking send. It is known that for blocking Send
operation, it needs to be completed on the source rank, not necessarily meaning that the
receiving part has received it, especially in cases where the buffer sent is small (FORUM,

3 For instance, a blocking operation means that the MPI operation only needs to complete locally (on
the MPI rank that is executing it), a synchronous operation means that the MPI operation needs to
be completed on every MPI rank participating.
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2015). However, there are cases where the sender can not complete the operation if the
buffer is large and the destination part is DEAD. The wrapper for the Send operation
changes the use of the blocking operation to the corresponding non-blocking and uses the
corresponding request object with the custom MPI_Iwait function.

MPI_Recv: The blocking Recv operation stalls the program until it receives the message
from the source. Suppose the source of the message is DEAD. In that case, this operation
could deadlock if the MPI distribution does "know" how to discover this kind of failure
(for instance, the MPICH distribution can detect the failure of processes through the TCP
sockets, so this operation would not deadlock, but lead to an error). The wrapper changes
the blocking Recv to the MPI_Mprobe to solve the problem. When it returns, if there is an
error, it is propagated to the Recv return value. Otherwise, if the probe function returns a
message, the Recv wrapper uses the MPI_Mrecv to capture the probed message.

As a general rule, the blocking and synchronous MPI operations (which needs to
employ some kind of synchronism) are the main problem related to program deadlocks. The
MPI standard proposes a non-blocking version with a request object associated for almost
every operation (few exceptions like the MPI_Mprobe). With that request and specifying
the other side of communication, one can use the MPI_Iwait version of MPI_Wait to wait
for the completion of that request. This procedure makes a generic alternative which
would not deadlock and could be used with the most part of MPI operation with the same
behavior, especially when using OCFTL as a stand-alone library.
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5 OCFTL usage on OmpCluster

This Chapter discusses the integration of OCFTL, proposed in Chapter 4 with
OmpCluster, discussed in Chapter 3. Section 5.1 explains the integration of OCFTL at
the OmpTarget target implementation level of OmpCluster and Section 5.2 describes
the integration of OCFTL at the OmpTarget interface implementation level of Omp-
Cluster.

5.1 Integration at the Target Level
As explained in Section 3.1, in the OmpTarget target implementation level, is

where the fault tolerance and event system implementations reside. The integration at
this level is straightforward. The wrappers already do the most significant integration
since they are used the same way the original functions (besides the particular case of the
MPI_Wait and MPI_Test. The return value of the wrappers are used to invalidate the event
in case of Failures. At this level, there is also the fault tolerance library initialization.
The location of this integration is at the same level as OCFTL implementation, like shown
in Figure 4, presented in Chapter 4.

The remaining integration point for OCFTL is the OmpCluster’s event system..
The event system is responsible for executing procedures, so it is also used to call the
procedures of checkpointing. The creation of three new events makes this possible:

RegisterCPPtrs: This event is responsible for registering a set of regions of memory to
be checkpointed. As saw in Section 2.2.2, before actually checkpointing, it is necessary
to register the pointers and size of each memory region. This event also returns the
information necessary to reload the buffer: the id of the buffer, the MPI rank that saved
the checkpoint, and the version of the checkpoint.

Checkpoint: This event saves a checkpoint for all previously registered buffers. This
function calls the checkpointing function and waits for its completion.

Recovery: This event is responsible for re-loading a saved buffer. In this stage of imple-
mentation, we used one event per buffer. The Recovery implements Algorithm 4 explained
in Section 4.3.1 for the case of one buffer.

5.2 Integration at the interface level
The integration at the OmpTarget interface implementation level is more com-

plex than in the OmpTarget target implementation level. At this level, there is the
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coordination of the target task executions. The execution is restricted to the host process,
differently of what happens at the OmpTarget target implementation level, which is
executed by every MPI process. For any FT procedure that involves any worker process, a
corresponding event is created, whose type is one of the events described in Section 5.1.

The integration at this level is divided in two parts: the notification callback,
which is responsible for listening to the OCFTL FT notifications (see Section 4.4.2)
and is further explained in Section 5.2.1; and the notification handler class, which is
responsible for executing FT procedures on the OmpTarget interface implementation
level and is further discussed in Section 5.2.2. Both parts of the integration are present in
the highlighted part of architecture shown in Figure 11.

Figure 11 – Location of fault tolerance integration inside OmpTarget.
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5.2.1 Notification Callback Function

The notification callback function is the most crucial part of the integration at the
OmpTarget interface implementation level since it is responsible for determining what
will be done depending on which notification is received. This function will be bound to
the notification callbacks, explained in Section 4.4.2. The current implementation of the
notification callback function is presented in Algorithm 3.

As seen in Algorithm 3, upon receiving a notification, the function acts based
on the notification that was received. As seen in Section 4.4.2, there are four types of
notifications: FAILURE, in which the notification handler will handle the failed device
and execute the restart procedures; FALSE_POSITIVE, in which the notification handler
will add back the now-alive process back to the alive devices list; CHECKPOINT, in which
the procedures of checkpointing will be initialized; and CHECKPOINT_DONE, in which the
procedures of checkpointing will be finalized.
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Algorithm 3 – Notification callback function.

1 void FTNotificationCallback(FTNotification notify_handler) {
2 switch (notify_handler.notification_id) {
3 case FTNotificationID::FAILURE: {
4 ft_handler.handleFailedDevice(notify_handler.device_id);
5 ft_handler.executeRestart(notify_handler.device_id);
6 break;
7 }
8 case FTNotificationID::FALSE_POSITIVE: {
9 ft_handler.removeFailedDevice(notify_handler.device_id);

10 break;
11 }
12 case FTNotificationID::CHECKPOINT: {
13 ft_handler.startCP();
14 break;
15 }
16 case FTNotificationID::CHECKPOINT_DONE: {
17 ft_handler.finishCP();
18 break;
19 }
20 }
21 }

5.2.2 Notification Handler

This class (another C++ class) is responsible of executing the FT procedures on
the OmpTarget interface implementation level based on a notification received by the
notification callback function. To better organize the description of this class, it is
subdivided in four categories: the interface operation, discussed in Section 5.2.2.1, the
tasking and mapping, explained in Section 5.2.2.2, the devices handling, discussed by
Section 5.2.2.3, and, the checkpointing, explained in Section 5.2.2.4.

5.2.2.1 Interface Operation

Before executing any fault tolerance operation at the OmpTarget interface im-
plementation level, some action is needed to control OpenMP targets execution. As seen
in Section 3.1, in the host process of OmpCluster, there will be local OpenMP threads
running. Those threads are controlled by OpenMP and not by OmpCluster, so, before
executing any fault tolerance operation at the OmpTarget interface implementation
level, those threads are temporary suspended by the NotificationHandler class. To do
that, the NotificationHandler class keeps a count of executing tasks (incrementing at the
start of each target function and decrementing at the end). It also defines execution states:
RUNNING, the normal state with no pending fault tolerance procedures; CHECKPOINTING,
meaning that a checkpoint procedure is pending or executing; FAILED, meaning that the
system encountered a failure and initial procedures are being done; and, RESTARTING,
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indicating that the system is re-executing tasks that failed. Figure 12, shows the state
transitions. From the RUNNING state, upon receiving a checkpointing of failure notification,
the state will be changed to CHECKPOINTING or FAILED respectively. For the first case,
after receiving the notification of checkpoint completion, the state will be changed back to
RUNNING. For the second case, the NotificationHandler class will do the procedures to
find the failed tasks to restart and load the required buffers before changing the state to
RESTARTING, when the tasks will be restarted. When all the tasks have finished the restart
procedure, the state will be changed to RUNNING again.

Figure 12 – States diagram for the execution states defined by the FT handler at interface
level.

Checkpointing

Running

Failed Restarting

Failure Notification

Checkpoint Notification

Checkpoint Done Notification

After defined tasks to restart

Tasks finished restarting

The executing tasks counter allows the handler to determine if the fault tolerance
procedure can be executed or if it needs to wait further. During the wait, the handler holds
a conditional variable. This conditional variable is used when a thread finishes
the execution of a task and tries to execution a new one. If the conditional variable is
held, the thread is suspended and can only start once the variable is freed. When all local
thread finishes the currently executing tasks, the fault tolerance procedure can occur. This
procedure is crucial and permits the NotificationHandler class to execute procedures
without the need to care for the states of executing tasks (since there will be no tasks
executing).

As explained in Section 3.1, every OpenMP target task is associated with a specific
function1 at the OmpTarget interface implementation level. Knowing which function
was associated is essential for the restart process. So before starting each target task
execution, the handler saves which function and arguments were associated with the target
task.

1 Currently, these functions are: data_begin, data_update, data_end, target,target_teams, and the
nowait variants.
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5.2.2.2 Tasking and Mapping

The NotificationHandler class also holds information about tasks and task map-
ping. The integration of OCFTL to OmpCluster demanded a copy of the task graph
since it is used to search for tasks that are dependencies or dependents of failed tasks.
OmpCluster already has a structure that holds the necessary information. For the Notifi-
cationHandler class, a reference to this data structure is used, and during the execution
of the program, another structure is used, the Device-Task map.

The Device-Task map holds the information about which task is running on which
worker process. This is essential when a failure occurs since it is the primary source of
knowledge to determine if a task failed with the failed worker process. The other source of
finding failed tasks is searching for tasks that have the associated event returned failure.
However, if an event returns failure, we expect that a worker process failed, so the failed
task would be captured by the failure notification.

5.2.2.3 Devices Handling

Device handling is also done by the NotificationHandler class. OmpCluster itself
has a map for each device, which holds all the information about the device, including
the data maps. For the integration, a map that only holds information about how many
workers are available and the state of each worker is created.

The knowledge of how many worker processes are available is critical since each
time a process state is modified, the task graph is re-scheduled. For that reason, the
information about how many workers are available is used. The output of the scheduler
is id of the device, for each scheduled id the handler translates to the actual worker id
that represents that position. This is exemplified in the paragraph related to Restarting
Tasks, in Section 5.2.2.4.

5.2.2.4 Checkpointing

Concerning checkpointing, since OmpCluster is distributed, each process needs to
save the buffers that are stored. The more straightforward way is to save each allocated
buffer. However, as data management permits various instances of the same buffer (in
different devices), this would save different versions of the buffer, which make the loading
procedure more difficult (selecting from which process the buffer would be loaded). Another
problem is that some buffers may not have been used up to that point, so they are not
allocated on any device. But, it is also necessary to save them since the remaining tasks will
use them. There is three checkpointing operations in the integration which are discussed in
the paragraphs below: how to execute the save procedure of a checkpoint; how to execute a
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load procedure of a checkpoint; and how to re-execute the failed tasks after the checkpoint
was loaded.

Saving a checkpoint: Before taking a checkpoint the handler evaluates each remaining
task marking every buffer used to be saved. For each buffer, the handler will query the data
mapping provided by the OmpTarget interface implementation. If the buffer does not
have a mapping, it means that the buffer is not allocated on any device. In this case, the
host process (MPI rank 0) will save that buffer. If there is at least one map associated
with the buffer, the process that will save the buffer is chosen based on the type of the
maps associated with the buffer.

OmpCluster’s data management has three types of buffer mapping entries. A LOCAL
entry, meaning it belongs only to a specific target region and will not be forwarded to other
devices. A PROXY entry not associated to a specific target region, but can be forwarded to
other devices. And, a LINK entry, which is a forwarded buffer always linked to a PROXY
entry.

Since OpenMP’s local threads will be temporarily suspended, no tasks will be
executing, thus no LOCAL entries exist. Because of that, the handler only needs to take
into account PROXY and LINK entries. Two situations are possible: when there are only a
PROXY map associated with the buffer with no LINK entries; and when there are at least
one LINK entry active. In the first case, the first device (MPI rank 1) saves the buffer to
its checkpoint file, since every PROXY entry is held by the first device. In the second case,
the process associated with the last LINK added will be chosen, since it represents the last
version of the buffer.

After associating each buffer to a process, the handler creates a RegisterCPPtrs
event for each process to register the marked buffers. In sequence, the handler creates a
Checkpoint event to save the checkpoint and waits for the Checkpoint Done notification.
Finally, the handler finishes the checkpoint and frees the local OpenMP threads, and the
program execution will resume.

Loading a checkpoint: During restart, the handler loads all buffers that are needed by
the tasks marked to restart. First, the handler iterates each task querying the checkpoint
map2 and registers the buffers to load. Second, the handler selects the process to load each
buffer based on the checkpoint map. If it is the host process, no map for the buffer will be
created. Otherwise, if the buffer was loaded and already has a map, that map is discarded,
and a new map is created. For each buffer, a Recovery event is created.

The Recovery event implements the procedure described by Algorithm 4. This
procedure is needed since Veloc does not permit complete control of the checkpoint file
name. When a load procedure is done, Veloc appends its current rank (the one with it was

2 The checkpoint map holds where each buffer was saved in the last checkpoint process.
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Algorithm 4 – Given the three FT functions, the load process should follow the function
LoadBuffers().

1 // Finalizes current checkpoint context
2 void cpLoadStart();
3 // Loads buffer "id" from an checkpoint context
4 int cpLoadMem(int id, int s_cp_rank, int ver, size_t count,
5 size_t base_size, void *memregion);
6 // Initalizes original checkpoint context
7 void cpLoadEnd();
8
9 void LoadBuffers() {

10 ...
11 ftObject.cpLoadStart(); // one call
12 for (auto buf : buffers)
13 ftObject.cpLoadmem(buf.id, buf.cp_rank, buf.cp_ver, buf.count, buf.size,
14 buf.address); // one call per buffer
15 ftObject.cpLoadEnd(); // one call
16 ...
17 }

initialized) to the file name and loads the checkpoint. This makes the process of loading
checkpoints created by other ranks more intricate. To do so, the current execution of Veloc
is finalized and a new one (with the adequate rank, i.e., the rank that saved the checkpoint)
is run. After the checkpoint is loaded, this new execution is finished and the execution
with the original rank is restarted. This is done by the three steps in the algorithm: the
function cpLoadStart finishes the current instance of Veloc; cpLoadmem starts an instance
of Veloc in the rank that saved the buffer, loads the buffer from the file and finishes that
instance of Veloc; and finally cpLoadStart starts the Veloc in the initial rank again.

Now that the saving and loading procedures are explained, the last part of exploring
is the Restarting procedure:

Restarting Tasks: Before re-executing tasks, the OpenMP local threads are suspended
temporary and the handler checks for any buffer that is used by the tasks that will be
restarted. Then, each buffer is loaded from the last valid checkpoint.

In current version of OCFTL, the re-execution of tasks is done sequentially, based
on the history of the executed tasks. The history maintains the order of the tasks execution.
Since the tasks are re-executed sequentially, there is no concern about the dependencies.
Further discussions about the impact of this type of re-execution are made in Section 6.3.1.2.
Currently the OmpTarget interface implementation does not permit the scheduling of
the tasks marked to restart, so OpenMP local threads that are suspended can not be used.

The procedure described in Section 4.3.1 is done for each failed task in a failed-
tasks list to define what tasks will be restarted. Basically, any task with a direct or
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indirect dependency with the failed task and was already executed (but not saved by a
checkpoint) will also be marked to restart. As seen in Section 5.2.2.1, there will be no
executing tasks, so the handler does not need to bother with that kind of task.

After re-executing the tasks, it is necessary to re-schedule the remaining tasks.
This new schedule will be done with fewer available devices since the failed devices are
excluded from the available devices. Figure 13 shows an example if the system had five
available devices (device 0 to device 4), and device 3 failed, the scheduler will schedule
the tasks with devices ranging from 0 to 3 (notice that only four devices are available
after the failure, the devices 0, 1, 2 and 4). This is possible since the handler translates
the scheduled device to the available devices. If the scheduled device were 0, 1, or 2, the
translated device would remain the scheduled one, but if the scheduled device were 3,
the translated device would be the device 4 (the fourth device in the list of the available
devices).

Figure 13 – Translation of the output of the scheduler.
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Finally, to execute restarting, every task’s non-checkpointed information that is
needed to re-execute the tasks is stored in memory by the host process (since OCFTL does
not expect failures in the host process, as discussed in Section 6.4). The stored information
contains all the data necessary to call the interface functions again: the associated target
function and its arguments. So, the handler based on the task execution history, re-executes
each task sequentially. The handler uses the data store about the task (which function
and arguments) to replicate the call done by the OpenMP runtime.



45

6 Experimental Evaluation

This chapter discusses the experiments performed to assess different MPI imple-
mentation behaviors, to evaluate OCFTL performance characteristics, and to discuss the
current limitations of this work. Section 6.1 presents the test environment, while Section 6.2
discusses the behavior of different MPI implementations in the presence of failures. Then,
Section 6.3 describes the experiments to evaluate OCFTL’s performance. And Section 6.4
presents the current limitations and possible solutions.

6.1 Test Environment

All tests were performed in a distributed environment. The cluster used was the
Santos Dumont supercomputer (SDumont), located at the LNCC (Laboratório Nacional
de Computação Científica). SDumont is one of the biggest supercomputers in Brazil. For
the reported experimental results, the computing nodes used were the model named B710.
These computing nodes feature 64Gb of RAM and 2xCPU Intel Xeon E5-2695v2 Ivy
Bridge, each with 12 cores (24 threads) running at 2.4 GHz (3.2 GHz Turbo Boost). The
network interface is InfiniBand (56 Gb/s). The number of cores was selected according to
each test. The source code for all the tests of this research is available at the repository:
<https://gitlab.com/phrosso/ftmpi-tests>.

To execute the tests, two MPI distributions with some configuration variations
were used. MPICH version 3.4.2 (newest stable release at the time) and Open MPI version
4.1.0 (the last version compatible with ULFM). All MPI distributions were configured with
support to multi-threading (MPI_THREAD_MULTIPLE), and compiled with UCX1 and without.
UCX stands for Unified Communication X and is used to accelerate the performance
of networks in HPC and is used in OmpCluster. ULFM version 2.1 was also used in
some tests. This version of ULFM is based on Open MPI version 4.1.0. During the
experiments, one extra execution configuration parameter was used: the recovery flag, "–
enable-recovery" for Open MPI and ULFM, or "–disable-auto-cleanup" for MPICH.
Algorithm 15(Appendix E) shows all configuration options for each version of MPI.

6.2 MPI Behavior

OCFTL depends on the behavior of each MPI implementation. Each MPI imple-
mentation has ample freedom to implement the MPI standard, so it is expected that
1 https://www.openucx.org/

https://gitlab.com/phrosso/ftmpi-tests
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different MPI implementations present different behavior in the presence of failures. To
properly implement a fault tolerant solution in OCFTL, it was necessary to evaluate the
behavior of each implementation in different critical execution scenarios. For example,
what happens if a collective operation is made using a communicator with the presence of
a failed node? or, what happens if a blocking send call is made to a failed node? These
tests focus on evaluating such behaviors.

Some point-to-point and collective operations were selected for these tests. The
operations were executed in all variations (blocking, non-blocking and synchronous when
applicable) by two processes. Some operations have a source and a destination processes
(e.g., MPI_Send) while in others every process has both jobs (e.g., MPI_Allreduce). Where
applicable, two instances of the tests were being executed, one killing the MPI rank 0
and other killing the MPI rank 1. Each run is considered unsuccessful if it times out.
The objective of these tests is to check if the operation deadlocks, not to evaluate the
operation’s correctness in the presence of failures. The benchmark programs and runtime
configurations are available on the Behavior folder of the aforementioned Git repository.

Tables 2 and 3 show the results of the experiments with a few MPI operations
on MPICH distributions and OpenMPI distributions, respectively. For both tables, each
cell represents the results of each variation of a operation when applicable, in the order
Blocking / Non-Blocking / Synchronous. Possible values are: ok if the program finished
(with or without errors); to if the program timed out; and (-) if the variation does not
exist. Finally, for each MPI distribution, the tests simulate the failure of a MPI process by
killing this process (rank 0 or 1, where it is applicable).

Table 2 – Behavior of different MPI operations for MPICH and MPICH+UCX. (ok means
program finished and to means program timed out)

MPICH MPICH+UCX
Kill P0 Kill P1 Kill P0 Kill P1

MPI_Allreduce (ok / ok / - ) (ok / ok / - ) (to / to* / - ) (to / to* / - )
MPI_Barrier (ok / ok / - ) (ok / ok / - ) (to / to / - ) (to / to / - )
MPI_Bcast (ok / ok / - ) (ok / ok / - ) (to / to* / - ) (to / to / - )
MPI_Bsend - (ok / ok / - ) - (to / to / - )
MPI_Gather (ok / ok / - ) (ok / ok / - ) (to / to / - ) (to / to* / - )
MPI_Recv - (ok / ok / - ) - (to / to* / - )
MPI_Reduce (ok / ok / - ) (ok / ok / - ) (to / to / - ) (to / to* / - )
MPI_Send - (ok / ok / to) - (to / to / to)
MPI_Wait - (ok / - / - ) - (to / - / - )

Representation: (Blocking / Non-Blocking / Synchronous)

Table 2 shows that for MPICH configured without UCX, in all tests, but the
synchronous send operation, the program finished. This was expected since MPICH in
its basic configuration has limited FT support. For MPICH with UCX, every program
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timed out after 5 seconds (a regular execution of the test program runs in less than 1
second). The value with (*) next a result means that the program does not time out
during the evaluation of the target function, but on the execution of MPI_Request_free
or on MPI_Finalize functions.

Table 3 – Behavior of different MPI operations for OpenMPI and OpenMPI+UCX. (ok
means program finished and to means program timed out)

OpenMPI OpenMPI+UCX
Kill P0 Kill P1 Kill P0 Kill P1

MPI_Allreduce (to / ok / - ) (to / ok / - ) (to / to / - ) (to / ok / - )
MPI_Barrier (to / to / - ) (to / to / - ) (to / to / - ) (to / to / - )
MPI_Bcast (to / ok / - ) (to / to / - ) (to / to / - ) (to / to / - )
MPI_Bsend - (to / to / - ) - (to / to / - )
MPI_Gather (to / to / - ) (to / ok / - ) (to / to / - ) (to / to / - )
MPI_Recv - (to / ok / - ) - (to / to / - )
MPI_Reduce (to / to / - ) (to / ok / - ) (to / to / - ) (to / to / - )
MPI_Send - (to / ok / to) - (to / to / to)
MPI_Wait - (to / - / - ) - (to / - / - )

Representation: (Blocking / Non-Blocking / Synchronous)

Table 3 shows that for Open MPI without UCX, for most of Non-Blocking
operations the program finishes while for Blocking operations every program times out.
For the configuration with UCX, every program, but the Non-Blocking MPI_Allreduce
(when the rank 1 process was killed) has failed.

This experiment shows that different MPI distributions can have different behaviors
depending on which operation is used. These results explain the reason OCFTL employs
the function wrappers, discussed in Section 4.4.4. Although those wrappers are specific for
OmpCluster, they will avoid the program of being deadlocked independent of what MPI
distribution is used.

In general, the non-blocking operations are the most failure-friendly operations.
However, these operations can demand the use of a wait operation or a test operation
inside a loop, which could lead to a deadlock. OCFTL provides non-deadlockable wait
and test operations to be used together with the non-blocking operations. This way, the
program will not deadlock because of failures related to MPI.

6.3 OCFTL performance evaluation
This section presents the tests that aim to evaluate OCFTL performance charac-

teristics. Section 6.3.1 discusses the integration of OFCTL and OmpCluster, looking at
the overhead and correctness. Section 6.3.2 brings the results that evaluate the impact of
heartbeat frequency and timeout properties. Section 6.3.3 evaluates the internal broadcast
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of OCFTL compared to other broadcasting algorithms. Finally, Section 6.3.4 discusses the
locality problem presented in Section 4.2.

6.3.1 Using OCFTL in OmpCluster

There are two main interests in testing OCFTL with OmpCluster. First, overhead
of OCFTL on the execution of programs running on the OmpCluster architecture was
evaluated (Section 6.3.1.1). Second, the correctness of programs using OmpCluster with
OCFTL in presence of failures was verified (Section 6.3.1.2).

6.3.1.1 OCFTL Overhead

OmpcBench script was employed to evaluate the overhead imposed by OCFTL on
OmpCluster programs. This script executes the TaskBench2, with different task graphs as
input. Since OmpCluster is in constant changes, these tests merge the latest modifications
related to fault tolerance3. These tests dedicated to the evaluation of OCFTL overhead do
not include failure simulation and leverages OmpCluster’s container architecture, with a
specific container built with the latest OCFTL modifications to execute the tests. Table 10
(Appendix E) shows the values of OCFTL variables used in this experiment.

Due to OmpCluster’s current limitations4, these tests use 1+8 nodes (1 for the
head process and 8 for worker processes). The size of TaskBench graphs is 8× 16 (width by
depth). Four graphs were tested to explore different logical and communication patterns.
stencil_1d, which has the pattern of a one dimensional stencil application. fft, which
has the pattern of an FFT (Fast Fourier Transform) application. trivial, which is a
pattern that has no dependencies and communication between the tasks. And no_comm,
which has a logical depth dependency with no communication between the tasks. Three of
the five OmpcBench defined sizes were used to define the tasks’ duration: micro, which
simulates 100µs; small, for 50ms tasks; and large, that represents 1s tasks. TaskBench
also permits configuring the ratio between computation and communication. For the sake
of simplicity, these tests ran with a ratio of one to one, meaning tasks will compute roughly
the same as they communicate. For each test, a total of 10 samples were used and the
confidence interval of 95% was calculated using the Bootstrap method (EFRON; HASTIE,
2016) with 10000 iterations.

Table 4 shows OCFTL’s overhead over OmpCluster (Baseline). As seen in Table 4,
for the no_comm, trivial and the micro benchmarks of fft and stencil_1d no significant
2 Task Bench is a configurable benchmark for evaluating the efficiency and performance of parallel and

distributed programming models, runtimes, and languages (SLAUGHTER et al., 2020).
3 The version of OmpCluster and OCFTL are available at <https://gitlab.com/phrosso/llvm-project>

in the default branch test/ft-feature-test
4 At the time of this experimental evaluation, OmpCluster is only able to run small programs with a

limit of 255 tasks.

https://gitlab.com/phrosso/llvm-project


6.3. OCFTL performance evaluation 49

Table 4 – Comparision between OmpCluster with and without OCFTL enabled for different Task Bench graphs.

Micro Small Large
Avg (s) CI 95% Avg (s) CI 95% Avg (s) CI 95% Overhead

Geo. Mean

fft
Overhead 1.07x 0.80x 0.79x

0.87xBaseline 0.1162 [0.1120, 0.1228] 3.4857 [3.4340, 3.5359] 58.572 [57.9310, 59.1593]
OCFTL 0.1084 [0.1079, 0.1127] 4.3827 [4.3125, 4.4656] 74.5599 [72.6821, 76.6640]

no_comm
Overhead 0.97x 1.02x 0.99x

0.99xBaseline 0.0856 [0.0837, 0.0873] 2.4779 [2.4509, 2.5025] 38.0695 [37.5677, 38.7132]
OCFTL 0.0881 [0.0866, 0.0895] 2.4378 [2.3974, 2.4774] 38.3335 [37.8999, 38.7799]

stencil_1d
Overhead 1.01x 1.26x 1.25x

1.16xBaseline 0.1164 [0.1150, 0.1183] 4.3735 [4.2812, 4.4838] 73.3837 [71.0218, 76.5664]
OCFTL 0.1158 [0.1137, 0.1177] 3.484 [3.4422, 3.5256] 58.6643 [57.9112, 59.3839]

trivial
Overhead 1.02x 1.00x 1.00x

1.01xBaseline 0.0702 [0.0694, 0.0712] 2.1375 [2.1209, 2.1548] 35.1977 [35.0825, 35.3095]
OCFTL 0.0691 [0.0677, 0.0708] 2.1369 [2.1254, 2.1490] 35.0637 [34.8730, 35.2436]

overhead can be observed. For the Small and Large, a difference can be observed, in the
fft benchmark, both types showed improvement when comparing the use of OCFTL to
the baseline, while in the stencil_1d benchmark, both types showed worse results when
comparing the use of OCFTL to the baseline. Both fft and stencil_1d have similar
patterns, where each (but the initials) task has three dependencies so it is expected the
results for them to be similar. So the type of task graph should not impact on the overhead
generated by OCFTL since the parallelization is similar. These outliers could be caused
by external sources, like CPU speed changes, among others.

The tests were executed evaluating OCFTL with and without function wrappers
with similar results. Results in Table 4 present the version without the wrappers since the
program should not have failures. If a false positive failure is encountered, the function
wrappers will start the execution of recovery approaches, like repairing a communicator,
which would affect the execution time (note that these tests were intended to evaluate
OCFTL without failures).

6.3.1.2 Execution Correctness

To evaluate the correctness of OCFTL as a failure mitigation approach in Omp-
Cluster. The results of a Block-Matrix-Multiplication program were evaluated. This
program does two things. First, it executes a block of code using the OpenMP directives,
and since it is compiled with OmpCluster, it will offload the computation as discussed in
Section 3.1 using OCFTL as FT library. Second, it executes a sequential version of the
algorithm in the rank 0, not using OmpCluster’s architecture. The configuration for the
matrix was a square matrix of 2800× 2800 and blocks of size 700, so 64 target tasks will
be generated. Algorithm 17 (Appendix E) shows the two versions of the algorithm.

Four nodes (1 host and 3 workers) were used to execute the program. Comparating
the execution times, the sequential version averages around 65s while the parallel version
averages approaximatelly at 7s, when a failure is injected, the time averages around 12s.
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Figure 14 – Final task graph of a block matrix multiplication program
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To execute the test, the library first forces a checkpoint5 And after that, injects a
failure on the worker 2. Figure 14 shows the task graph. Highlighted in green are the tasks
that were saved during the checkpoint. When the failure notification arrives, the executing
task on worker 2 (Rank 1 in the graph) was the one with ID equal to 199 (highlighted in
grey). Since all tasks before 199 were saved, it was the only task re-executed, recovering a
total of 3 buffers. The tasks that had the scheduled device rank different from the actual
rank are highlighted in cyan. Note that the translation will be only different after failures
happen.

At the end of each execution, the resulting matrix of the sequential and parallel
versions are compared. In all tests, including the one with checkpointing and restart, no
non-matching values were found. It is also important to point out the impact of failures.
The difference in the execution time has two causes: first, the program needs to save and
load the buffers, which takes some time; and second, it re-executes tasks sequentially, which
also takes some time. For the example case, only one task was re-executed, so no significant
impact is seen. In comparison, considering a program where 8 tasks were restarted, the
program will take 8× t time to re-execute all tasks (t being a task execution time), while
if all those tasks were parallelizable, it could take up to t time to execute. In this small
program, the time increase should not be a problem, but it could be more significative
when various tasks need to be re-executed.

6.3.2 An Empirical Evaluation of Heartbeat Parameterization

This section evaluates the MPI side of OCFTL. The tests with OmpCluster give
the evaluation about running OCFTL in OmpCluster programs, but does not give the
evaluation of OCFTL running with stressed MPI programs6. This section aims to evaluate
OCFTL under Intel MPI Benchmarks to define the limits of OCFTL based on those
programs.

5 In the example shown in Figure 17, 48 buffers were saved by the checkpoint. The host process saved
all the buffers since there are no PROXY and LINK data maps.

6 It is meant by stressed MPI programs, those where the program is overloaded by MPI message
exchange. MPI benchmarks are examples of stressed MPI programs, since they overload the program
with different MPI operations to establish the limits of a MPI distribution.
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Intel MPI Benchmarks7 is a set of MPI benchmarks intended to test MPI dis-
tributions of the MPI standard. The benchmark offers various subsets of benchmarks
directed to specific MPI operations. These experiments leverage the MPI-1 subset that
provides the evaluation of elementary MPI operations for communication. This subset has
point-to-point (P2P, where two processes communicate with each other) and collective
(coll, where a set of processes communicates with the entire set of processes) operations.
For this experiment, the ping-pong application was selected as a P2P operation tester
(since it is a send-recv operation), while the allreduce application was selected as a
coll operation tester (since it is an all-to-all operation). One benchmark of each type was
selected to make evaluation simpler, since the comparison is made with 5 different MPI
distributions for different values of heartbeat parameters.

The configuration for these experiments uses 20 nodes with 24 processes each,
totaling 480 processes. The benchmark configuration was set to test messages of length:
min, meaning messages with a size of 0 bytes; medium; meaning messages with a size of 64
Kbytes; and max, meaning messages with a size of 4 Mbytes. The number of repetitions
for each message size was the default of the tool (which is 1000 for 0 bytes messages, 640
for 64 Kbytes messages and 10 for 4 Mbytes messages). The npmin (minimum number
of the participants in each benchmark) was also set to 480, meaning that for the P2P
benchmark, there will be 240 pairs of processes, and all the 480 processes will do the MPI
operation collectively for the coll benchmark. This number of processes evaluates the
limits of heartbeat parameters and the scalability of OCFTL.

This experiment evaluated five MPI distributions: MPICH with UCX, MPICH
without UCX, Open MPI with UCX, Open MPI without UCX, and ULFM. For the first
four, OCFTL was the FT approach, while for the last, it used the ULFM’s detector. The
experiment tested different values of heartbeat periods8. At the same time, the timeout
was set to 100 times higher than the period. Defining those parameters would evaluate
the overhead of flooding the network with heartbeat messages. Tables 5, 6, 7, 8 and 9
(Appendix C) show the full results for MPICH with UCX, regular MPICH, Open MPI with
UCX, regular Open MPI and ULFM respectively. The baseline in the tests represents the
execution of the benchmarks without any fault tolerance support. Each test was executed
10 times and the confidence intervals are calculated using the Bootstrap method (EFRON;
HASTIE, 2016) with 10000 iterations. Section E.4 (Appendix E) shows the modifications
made in the Intel MPI Benchmarks to make it suitable for use with OCFTL and ULFM
as well as the commands used to execute the tests.

Open MPI with UCX suffers from internal problems9 and most of its tests could

7 Available at <https://github.com/intel/mpi-benchmarks>
8 For OCFTL, the tests defined the heartbeat steptime equal to the heartbeat period
9 These are segmentation fault problems generated by the mca_pml_ucx_recv_completion() internal

UCX function present in that distribution. This function is used, among others, by the MPI_Mrecv

https://github.com/intel/mpi-benchmarks
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not be completed. For that reason, this discussion will not include Open MPI with UCX.
Some of the P2P benchmarks using ULFM reported false-positive failures (for the periods
of 10, 20, 30 and 100ms). Finally, some samples of the first test (period of 10ms) of the
collective benchmark using MPICH with UCX also presented some internal errors related
to the internal states of UCX. Every other tested completed successfully.

Figures 15, 16, 17, 18, 19 and 20 summarize the data of the tables. The plots
represent the ratio between each benchmark and the associated baseline (same MPI
distribution without FT). And, the confidence intervals are calculated using the Bootstrap
method with 10000 iterations (EFRON; HASTIE, 2016).

Figure 15 – PingPong benchmark for mes-
sages with 0 bytes size
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Figure 16 – AllReduce benchmark for mes-
sages with 0 bytes size
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Note: Bars overlapping the plot limits in Figure 16 show a relation between tests (with
timestep 10 and 20) and baseline of 7.33 and 3.17.

Figures 15 and 16 show that for messages with no data (0 bytes), the regular
MPICH is the distribution where OCFTL has more overhead, especially for the collective
benchmark. Excluding those and the test with heartbeat timestep of 10ms for MPICH
with UCX, every other test showed overhead less than 10% when compared to the baseline.

Figures 17 and 18 show the overhead for messages with 64 Kbytes of data. For point-
to-point benchmarks every distribution besides the regular MPICH showed no significant
overhead. For collective benchmarks, all the distributions other than the regular OpenMPI
showed significant overhead typically higher than 50%.

Finally, figures 19 and 20 show results for messages with 4 Mbytes of data. For the
point-to-point benchmarks, only the regular MPICH showed significant overhead, with the
maximum overhead of approaximatelly 20%. For the collective benchmarks, with exception
of the benchmark with heartbeat timestep of 10ms for MPICH with UCX, the other
distributions showed up to 20% overhead. ULFM showed up to 40% overhead in some

function, which is heavily used by OCFTL in the procedure of checking if a message was received. This
problem does not occur with the MPICH with UCX distribution, and do not occur with the non-UCX
distributions.
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Figure 17 – PingPong benchmark for mes-
sages with 64 Kbytes size
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Figure 18 – AllReduce benchmark for mes-
sages with 64 Kbytes size
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Note: Bars overlapping the plot limits in Figure 18 show a relation between tests and baseline
ranging from 2.06 to 30.34.

Figure 19 – PingPong benchmark for mes-
sages with 4 Mbytes size
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Figure 20 – AllReduce benchmark for mes-
sages with 4 Mbytes size
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Note: Bars overlapping the plot limits in Figure 20 show a relation between tests with
timestep 10 and baseline of 3.06.

benchmarks. In various benchmarks, the results show that ULFM performs better than the
baseline, but Table 9 shows that the confidence intervals between the tested parameter and
the baseline overlaps, which means that one can not consider those results as performance
improvement.

It is important to highlight that the overhead should not be the only metric taken
into account when chosing a library. For example, in the tests, OCFTL showed more
overhead usings regular MPICH when compared to OCFTL using regular Open MPI.
However, when looking at the time spent to execute the benchmarks through the tables
in the Appendix C, the regular MPICH outperformed regular Open MPI in almost all
of them, especially for collective operations with larger data exchanges. The same occurs
when comparing ULFM, which showed almost no overhead, with OCFTL on top of regular
MPICH.
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Therefore, it is hard to point out an absolute value for the heartbeat properties
since OCFTL can be used with different MPI distributions, and some distributions will
perform better than others, depending on the case. Most of the tests showed that the
heartbeat period could be 10ms with the timeout equal to 1s, since it does not reported
false-positive failures. These values are far lower than what this research expects to set as
a default value for OmpCluster. At some point in the near future, OmpCluster will be
running jobs that will take days or weeks to complete, so setting properties from ms to s
(as the actual default values for OCFTL) should not make a huge difference.

Further tests were executed to define the heartbeat timeout. For OCFTL with
regular MPICH and regular OpenMPI, the heartbeat timestep and heartbeat period
value was set to 10ms and list of 10, 20, 40, 60, 80 and 100 times the heartbeat timestep
were used for the heartbeat timeout. The results showed that for regular MPICH,
executions with the timeout equal or higher than 400ms false positives failures do not
occur. To obtain the same behavior with Open MPI, heartbeat timeout values equal or
higher than 600ms were needed. The heartbeat timeout only implies at the false-positive
detection, it does not include significant extra overhead to the application, since it only
checks if the heartbeat has timed out, it does not check for MPI messages.

Lastly, these tests were expanded to be executed with the UCX distribution
variations since OmpCluster leverages UCX, but regular MPI (both MPICH and Open
MPI) outperformed UCX. It is essential to point out that these executions with the regular
variations simulated TCP over the InfiniBand, accelerating the speed of the library10.

6.3.3 Internal Broadcast

To evaluate the internal broadcast, a comparison was made between the our
approach, BMG and HBA algorithms (tested with ULFM – see Section 4.2). To compare
the broadcasts, each broadcast was implemented inside OCFTL, each implementation
(presented in the Appendix B) was made according to Algorithms 11, 12, and 13, for the
Chord-like, BMG and HBA respectively.

The objective of this experiment is to evaluate the time to propagate a failure and
the overhead they would impose on the application. So the test monitored the total time
to propagate a set of simultaneous failures (each process remaining in the application to
know about all the failures). The total number of messages each broadcast has used to
complete the propagation was also counted. The configuration for this experiment uses
a total of 480 processes distributed over 20 nodes and evaluates cases for 1, 2, 4, 8, and

10 The runtime flag -iface ib0 makes the regular MPICH to simulate TCP over the InfiniBand
hardware. For Open MPI, the FAQ says that this is done automatically by the library (<https:
//www.open-mpi.org/faq/?category=tcp#tcp-auto-disable>)

https://www.open-mpi.org/faq/?category=tcp#tcp-auto-disable
https://www.open-mpi.org/faq/?category=tcp#tcp-auto-disable
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Figure 21 – Time and total messages to achieve a consistent state through OCFTL, BMG
and HBA broadcasts.
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16 simultaneous failures. Each scenario consists of 10 samples. The full configuration for
running these experiments is presented in Section E.5 in the Appendix E.

Figure 21 shows the comparison between the broadcasting algorithms. Although
the figure shows the Chord-like is marginally better than BMG and HBA, the time taken
to know about all failures (achieving a consistent state) is practically the same for all
the broadcasting algorithms, as it is possible to see through the performance relation
between the broadcast used by OCFTL and the best of BMG and HBA (P in the figure),
where the values are close to 1.0 meaning the times are almost equal. The main difference
is in the total number of messages (N in the figure). The proposed algorithm achieved
the reduction of about 30% in most of the experiments (those represent received only
broadcasts, messages lost during the execution and the broadcasts sent to already dead
processes are not take into account). These results show that the Chord-like broadcast
algorithm is a viable and better alternative to current state-of-the-art FT broadcasting
algorithms.

6.3.4 Locality Problem

The rationale beyond the initial shuffling positions of the MPI rank in the ring
to solve the locality problem was presented in Section 4.2. This experiment proposes
the evaluation of the shuffling by simulating simultaneous failures (1, 2, 4, 8, and 16
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Figure 22 – Comparision between standard and shuffled initial positions for random and
sequential failures.
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simultaneous failures) for two cases: where the distribution of ranks would be sequential
over the nodes (e.g., 0 – 23 in the first node, 24 – 49 in the second node, and so on),
which is the worst scenario if the positions are not shuffled and sequential failures happen
(each dead process, except one of them, is observed by a dead process); and, where the
distribution of process would be defined by a round-robin choice (e.g., 0 in the first node, 1
in the second node, and so on), which is the best scenario if the positions are not shuffled
and sequential failures happen (each dead process is observed by an alive process). For
this experiment, 480 processes were used over 20 nodes and each scenario consists of 10
samples. The full configuration for running this experiments is presented in Section E.5
(Appendix E).

Figure 22 shows the comparison between two situations. The first case is for failures
of pseudo-random MPI Rank. In this case, failures are defined by a round-robin algorithm
that takes account of how many processes per node were allocated, in this case, 24,
representing the best case for the standard algorithm (not shuffled). The second case is
failures of sequentially distributed MPI ranks, which should be the worst case for the
standard algorithm. The worst and best cases are theoretically defined, but as OCFTL
includes a probability factor, this is not deterministic anymore. Figure 22 shows that for
random failures, the standard and shuffle options take about the same time to achieve the
consistent state, while for sequential failures, the standard option follows a linear function
that increases the time as the number of simultaneous failure occur. The shuffle option is
shown to be good for sequential failures, once the times to achieve a consistent state are
less or equal to the standard option. In general, the shuffled positions shows to be good,
having results even or better than the standard positions.
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6.4 Limitations
The first observed limitation of OCFTL is in the procedure of repairing a communi-

cator, discussed in Section 4.4.1. An inconsistent state of agreement between the processes
occurs every time a request to repair a communicator is made, and OCFTL is in the
middle of failure propagation. That will cause the processes to not agree with each other,
and the procedure will not succeed. Solving this problem is not trivial. Since the request is
made by one process, and the others receive this request through an internal broadcast, it
is hard to determine its inconsistency. This topic will be tackled in the subsequent versions
of OCFTL, in which data synchronization will be done using vector clocks.

Another limitation of OCFTL refers to the use of multiple communicators. Cur-
rently, the use of multiple communicators requires multiple OCFTL objects, which means
that an MPI process that participates in more than one communicator would have the
corresponding number of fault tolerance threads. Future studies will include handling
multiple communicators by only one OCFTL object.

Concerning checkpointing, currently, OCFTL re-executes tasks sequentially since it
has no control over the OpenMP threads that are stalled at the moment of the restart.
One solution to this problem is scheduling those tasks and acting as the OpenMP runtime,
redirecting the stalled OpenMP threads to execute normally the tasks marked to restart.

Finally, there is a limitation when OCFTL is used with OmpCluster. Currently,
OmpCluster’s runtime uses the process with rank 0 as the head process, which coordinates
the execution and runs the core of OpenMP. OCFTL currently does not employ fault
tolerance for the head process, which means that if it fails, the application needs to be
restarted from the beginning. Providing FT for the head process is not trivial. Currently,
OCFTL is not able to migrate or restart the core of OpenMP. That is a concern for future
works, which might achieve it by replicating the head node and duplication of all messages
exchanged by it, for example. Another problem with specific rank failure is the failure
of MPI rank 1. This is the default "proxyable" process, which holds the proxy entries of
any data mapping between the host and any worker. Currently, OmpCluster does not fix
those tables when this specific process dies. The solution is simple, the map should be
changed to the following process, but it is necessary to verify the correctness of the map
after redefining the proxy entry of each map.
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7 Conclusion

Combining FT and MPI is not a trivial task, and yet it is often done manually by
MPI users. This document proposes a new library (OCFTL) that is an MPI implementation-
independent approach. OCFTL tackles the problem of detecting and propagating failures,
repairing invalid communicators, and proposes procedures to solve problems related to
the behavior of synchronous and blocking operations. OCFTL was implemented to serve
as the FT system for the OmpCluster project, which aims at easing the development of
scientific applications for HPC, especially for researchers from non-computing areas.

The main objective of this research is to improve the resilience of MPI inside
OmpCluster, providing it with a fault tolerance solution capable of detecting failures,
surviving them, and completing the program execution correctly even if in the presence of
failures. OCFTL offers: a heartbeat capable of detecting failures; an internal fault-tolerant
broadcast algorithm with a reduced number of messages exchanged when compared to other
broadcasting algorithms; checkpointing leveraging Veloc; and extra features, like wrappers
to avoid deadlocking in MPI communications with dead processes, MPI communicators
shrinkage, updated states of MPI communicators and processes, and notifications callbacks.
This set of fault tolerance tools improves the resilience of MPI to the point where the
program running OmpCluster can survive and complete with success even if in the presence
of failures.

OCFTL is implemented in the core of OmpCluster, so, except for a few configura-
tions, it will be transparent to the final user of OmpCluster, meaning the user will not have
to add FT handling to their application source code. The library also is easier to maintain
or update since it only employs MPI functions present in the MPI standard, which are
well documented and heavily discussed by the MPI community. Its implementation is
self-contained in a single C++ class, so the maintaining and updating is easier since there
are no scattered components. These characteristics fulfill the first specific objective of this
research.

This work also explored, in some way, the use of more than one failure mitigation
approach to resolve the impact of failures in the applications. In OCFTL, checkpointing was
implemented, and a draft of how replication could be done was made, even if, at this time,
OCFTL still lacks full support for alternative approaches to failure mitigation.. However,
it improves the resilience by providing the shrinkage of the communicators (making it
possible to execute collective operations in the presence of failures) and wrappers (to
avoid the possible deadlock of MPI operations executed in the presence of failures). This
characteristic fulfills the second specific objective of this work.
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OCFTL is compatible with any standard-compliant MPI implementation. It
was tested in different clusters (Santos Dumont supercomputer and Sorgan (ROSSO;
FRANCESQUINI, 2021)) and was built with the exact same requirements of OmpClus-
ter. Therefore it is compatible to all environments that support OmpCluster. Therefore,
OCFTL fulfills the third specific objective of this research.

Results of this research include the development of techniques to workaround
and avoid MPI deadlocks in the presence of failures. Experimental results show that for
taskbench tests, OCFTL has a low impact on OmpCluster’s performance. They also show
that OCFTL portability could be used to overcome eventual overheads it may cause
by the execution on faster MPI distributions. Additionally, the proposed algorithm for
internal broadcast also provides a way to reduce message overloading while maintaining
the robustness of an FT broadcasting algorithm. Finally, the technique of shuffling the
initial position of the processes in the heartbeat ring was shown to be efficient, and better
than the standard algorithm, while maintaining the simplicity.

OCFTL still has some limitations. First, it is restricted to one communicator.
Second, the shrinkage procedure can not be completed if a failure occurs in the course of
this procedure. Therefore, OCFTL cannot yet deal with failures in the host process, and
for failures in the first worker, the data mapping will be broken. Finally, the checkpointing
procedure currently can only re-execute tasks sequentially.

7.1 Publications

This research produced two articles published at the time of the production of
this document. Both articles were published at the Escola Reginal de Alto Desempenho
(Regional de São Paulo) - ERAD-SP, on the 2020 (XI) and 2021 (XII) editions. Both
publications received the award of Best Paper in the Graduate Category of each edition.

The first article, published at the XI edition (ROSSO; FRANCESQUINI, 2020),
discussed the subject of integrating fault tolerance and scheduling, testing choosing between
using checkpointing or replication at the moment the application schedules the tasks based
on the characteristics of the tasks. The tests were based on simulations using scientific
workflows from Pegasus1. The results obtained show that choosing the fault tolerance
approach on the fly according to the task’s characteristic can reduce the total makespan
of the application in the presence of failures. Although this article is more generic and is
not directly related to OmpCluster, it gives insights into how fault tolerance approaches
can be used in OmpCluster.

The second article, published in the XII edition (ROSSO; FRANCESQUINI, 2021),

1 Available at <https://pegasus.isi.edu/>

https://pegasus.isi.edu/
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discussed the subject of failure detection and propagation. This article is related to OCFTL
and gave an initial evaluation about the heartbeat and propagation discussed in Section 4.2.
The tests were similar to those presented in in Section 6.3.2, 6.3.3 and 6.3.4, but smaller.
Results showed that the proposed algorithms are as good or better in some cases when
compared to the state-of-the-art.

We also expect to publish one more article related to this research. This article
would explore the results of OCFTL when used by OmpCluster to evaluate the correctness,
the overhead of the library over OmpCluster, and other impacts OCFTL when used with
OmpCluster.

Future Work

This research will be continued by the author as a doctoral thesis. So, most of the
limitations and pending improvements will be tackled. This research will focus on the
following topics:

• Extend fault tolerance to the outer domain of the fault tolerance in OmpCluster. This
is especially related to failures in the host process. It is intended to use replication,
so the replicas can control the OpenMP application if the host process fails.

• Extend the existing solutions (e.g., checkpointing) to other devices. In the OmpClus-
ter project, it is intended to have a second level of computation offloading, which
means, for example, offloading to GPUs.

• Optimize the checkpointing, providing incremental checkpointing, which could be
achieved by saving only the part of the used buffers. Moreover, support persistent
memories, which are memories that have higher speed than HDs and SSDs.

• Provide replication as another fault tolerance approach for failure mitigation, which
was already discussed and drafted by this work.

• Evaluate the inclusion of pro-active fault tolerance. The pro-active fault tolerance
could help OmpCluster mitigate the impact of failures, taking actions before failure
happens. Some status monitoring could be employed for this case. Like measuring
CPU usage and temperature variation.

• Recover failed workers. Currently, the system is able to survive failures but not able
to recover the failed processes. For this, OCFTL needs to spawn new processes or
allocate more processes at the beginning of the program to be in reserve for failures.
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Also, the limitations discussed in Section 6.4 are all topics to be tackled in the
future, especially those concerning the tasks re-execution and failures on the host and first
work device (the one that holds the proxy entries for all data maps).
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APPENDIX A – Fault Tolerance MPI
Wrappers Implementation

Algorithm 5 – OCFTL’s costum MPI function to MPI_Itest.

1 int MPI_Itest(MPI_Request *request, int *flag, MPI_Status *status, int proc) {
2 if (disable_ft || ft_handler == nullptr || proc == ft::FT_TEST_LEGACY) {
3 return __real_MPI_Test(request, flag, status);
4 }
5 assertm((proc >= ft::FT_MPI_COLLECTIVE) && (proc < ft_handler->getSize()),
6 "Waiting for request with invalid rank participating.");
7
8 if (proc == ft::FT_MPI_COLLECTIVE) {
9 // If it is a collective call

10 if (ft_handler->getCommState() != ft::CommState::VALID) {
11 MPI_Request_free(request);
12 return ft::FT_ERROR;
13 }
14 } else {
15 // If it is a point-to-point call
16 if (ft_handler->getProcessState(proc) != ft::ProcessState::ALIVE) {
17 MPI_Request_free(request);
18 return ft::FT_ERROR;
19 }
20 }
21
22 // If there is no errors associated to the processes. return the real call
23 __real_MPI_Test(request, flag, status);
24 return ft::FT_SUCCESS;
25 }

Algorithm 6 – OCFTL’s wrapper function to MPI_Free_comm.

1 int __wrap_MPI_Comm_free(MPI_Comm *comm) {
2 if (disable_ft || ft_handler == nullptr) {
3 return __real_MPI_Comm_free(comm);
4 }
5 if (ft_handler->getCommState() == ft::CommState::VALID) {
6 __real_MPI_Comm_free(comm);
7 return ft::FT_SUCCESS;
8 } else {
9 if (ft_handler->getRank() == 0)

10 FTDEBUG(
11 "[Rank %d FT] - Could not free communicator with a failed process\n",
12 ft_handler->getRank());
13 return ft::FT_ERROR;
14 }
15 }
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Algorithm 7 – OCFTL’s wrapper function to MPI_Barrier.

1 int __wrap_MPI_Barrier(MPI_Comm comm) {
2 if (disable_ft || ft_handler == nullptr) {
3 return __real_MPI_Barrier(comm);
4 };
5 int result = ft::FT_ERROR;
6 MPI_Request barrier_req;
7 if (ft_handler->getCommState() == ft::CommState::VALID) {
8 MPI_Ibarrier(comm, &barrier_req);
9 result = MPI_Iwait(&barrier_req, MPI_STATUS_IGNORE, ft::FT_MPI_COLLECTIVE);

10 }
11 // If comm is invalid or previouse call to MPI_Ibarrier failed
12 while (result == ft::FT_ERROR) {
13 // If comm is not valid, let us return an error, but try to fix the comm and
14 // call MPI_Ibarrier
15 comm = ft_handler->requestCommRepair();
16 assertm(comm != MPI_COMM_NULL,
17 "MPI_Ibarrier was called within an invalid MPI Comm. FT library "
18 "could not the reestablish comm.");
19 MPI_Ibarrier(comm, &barrier_req);
20 result = MPI_Iwait(&barrier_req, MPI_STATUS_IGNORE, ft::FT_MPI_COLLECTIVE);
21 if (result == ft::FT_SUCCESS) {
22 result = ft::FT_SUCCESS_NEW_COMM;
23 if (ft_handler->getRank() == 0)
24 FTDEBUG("[Rank %d FT] - MPI_Barrier was called within an invalid MPI "
25 "Comm. Executing in a repaired comm\n",
26 ft_handler->getRank());
27 }
28 }
29 return result;
30 }

Algorithm 8 – OCFTL’s wrapper function to MPI_Mprobe.

1 int __wrap_MPI_Mprobe(int source, int tag, MPI_Comm comm, MPI_Message *message,
2 MPI_Status *status) {
3 if (disable_ft || ft_handler == nullptr) {
4 return __real_MPI_Mprobe(source, tag, comm, message, status);
5 }
6 int probe_flag = 0;
7 MPI_Improbe(source, tag, comm, &probe_flag, message, status);
8
9 while (!probe_flag) {

10 if (ft_handler->getProcessState(source) != ft::ProcessState::ALIVE) {
11 return ft::FT_ERROR;
12 }
13 MPI_Improbe(source, tag, comm, &probe_flag, message, status);
14 }
15 return ft::FT_SUCCESS;
16 }
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Algorithm 9 – OCFTL’s wrapper function to MPI_Send.

1 int __wrap_MPI_Send(const void *buf, int count, MPI_Datatype datatype, int dest,
2 int tag, MPI_Comm comm) {
3 if (disable_ft || ft_handler == nullptr) {
4 // If FT is disabled
5 return __real_MPI_Send(buf, count, datatype, dest, tag, comm);
6 }
7 // Replaces regular Send by Isend
8 MPI_Request w_send_request;
9 MPI_Isend(buf, count, datatype, dest, tag, comm, &w_send_request);

10 int result = MPI_Iwait(&w_send_request, MPI_STATUS_IGNORE, dest);
11 if (result == ft::FT_ERROR) {
12 MPI_Request_free(&w_send_request);
13 }
14 return result;
15 }

Algorithm 10 – OCFTL’s wrapper function to MPI_Recv.

1 int __wrap_MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source,
2 int tag, MPI_Comm comm, MPI_Status *status) {
3 if (disable_ft || ft_handler == nullptr) {
4 // If FT is disabled
5 return __real_MPI_Recv(buf, count, datatype, source, tag, comm, status);
6 }
7 MPI_Message msg;
8 // Keep probing until the message is received and stored in msg
9 int result = MPI_Mprobe(source, tag, comm, &msg, MPI_STATUS_IGNORE);

10 if (result == ft::FT_SUCCESS) {
11 // Get message and buf contents from msg
12 MPI_Mrecv(buf, count, datatype, &msg, MPI_STATUS_IGNORE);
13 }
14 return result;
15 }
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APPENDIX B – Implementation of
Chord-like, BMG and HBA broadcasting

algorithms

Algorithm 11 – Implementation for the Chord-like broadcasting algorithm.

1 // neighbors is a vector that represents the heartbeat ring
2 for (std::size_t i = 1; i < neighbors.size(); i *= 2) {
3 int index = (n_pos + i) % neighbors.size();
4 if (neighbors[index] != rank) {
5 MPI_Isend(bc_message, 3, MPI_INT, neighbors[index], TAG_HB_BCAST,
6 hb_comm, &send_request);
7 MPI_Request_free(&send_request);
8 }
9 }

Algorithm 12 – Implementation for the BMG broadcasting algorithm.

1 // neighbors is a vector that represents the heartbeat ring
2 for (std::size_t i = 1; i < neighbors.size(); i *= 2) {
3 // Successor
4 int index_s = (n_pos + i) % neighbors.size();
5 if (neighbors[index_s] != rank) {
6 MPI_Isend(bc_message, 3, MPI_INT, neighbors[index_s], TAG_HB_BCAST,
7 hb_comm, &send_request);
8 MPI_Request_free(&send_request);
9 }

10 // Predecessor
11 int index_p = (n_pos - i) % neighbors.size();
12 index_p = index_p < 0 ? neighbors.size() + index_p : index_p;
13 if (neighbors[index_p] != rank) {
14 MPI_Isend(bc_message, 3, MPI_INT, neighbors[index_p], TAG_HB_BCAST,
15 hb_comm, &send_request);
16 MPI_Request_free(&send_request);
17 }
18 }
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Algorithm 13 – Implementation for the HBA broadcasting algorithm.

1 // neighbors is a vector that represents the heartbeat ring
2 int k = static_cast<int>(std::floor(std::log2(neighbors.size())));
3 for (std::size_t i = 0; i < k; i++) {
4 // Successor
5 int index_s = (n_pos + i) % neighbors.size();
6 if (neighbors[index_s] != rank) {
7 MPI_Isend(bc_message, 3, MPI_INT, neighbors[index_s], TAG_HB_BCAST,
8 hb_comm, &send_request);
9 MPI_Request_free(&send_request);

10 }
11 // Predecessor
12 int index_p = (n_pos - i);
13 index_p = index_p < 0 ? neighbors.size() + index_p : index_p;
14 if (neighbors[index_p] != rank) {
15 MPI_Isend(bc_message, 3, MPI_INT, neighbors[index_p], TAG_HB_BCAST,
16 hb_comm, &send_request);
17 MPI_Request_free(&send_request);
18 }
19 }
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APPENDIX C – Intel MPIBench Results

Table 5 – Results for MPICH + UCX. First column represents the values of the heartbeat timestep. The
heartbeat period was equal to the timestep and the timeout was set 100 times higher. The three
other columns show the value of the benchmark for different message sizes.

Collective (allreduce benchmark)
HB

TimeStep
0 bytes 64 Kbytes 4 Mbytes

Avg (us) 95% CI Avg (us) 95% CI Avg (us) 95% CI
10 0.33 [0.30, 0.36] 1262.88 [865.30, 1790.82] 204668.62 [188968.36, 220843.53]
20 0.25 [0.25, 0.25] 4432.03 [3759.82, 5076.37] 75817.62 [73878.96, 78055.52]
30 0.25 [0.24, 0.25] 1620.25 [1450.49, 1906.78] 76607.59 [69024.59, 89522.50]
40 0.24 [0.24, 0.25] 981.79 [931.93, 1036.40] 75019.84 [73645.35, 76485.05]
50 0.24 [0.24, 0.25] 874.23 [819.23, 951.95] 73505.86 [70235.02, 77175.05]
60 0.24 [0.24, 0.24] 888.86 [808.89, 1005.01] 72846.35 [71184.27, 74536.30]
70 0.24 [0.24, 0.25] 794.62 [758.16, 838.16] 72084.98 [69930.70, 74090.92]
80 0.24 [0.24, 0.25] 753.48 [725.53, 784.00] 71472.52 [69052.43, 73796.55]
90 0.25 [0.24, 0.27] 765.19 [707.43, 826.65] 69430.36 [67589.24, 71513.27]
100 0.24 [0.24, 0.25] 748.5 [687.56, 833.77] 70781.45 [69201.64, 72437.55]
Baseline 0.24 [0.24, 0.24] 828.67 [587.21, 1144.50] 66769.5 [63673.20, 69344.30]

Point-to-point (pingpong benchmark)
HB

TimeStep
0 bytes 64 Kbytes 4 Mbytes

Avg (us) 95% CI Avg (us) 95% CI Avg (us) 95% CI
10 0.43 [0.42, 0.46] 52.24 [52.05, 52.45] 3322.44 [3211.95, 3402.30]
20 0.42 [0.41, 0.43] 52.86 [52.67, 53.16] 3379.62 [3254.89, 3466.25]
30 0.41 [0.40, 0.41] 52.28 [51.16, 52.89] 3359.87 [3240.33, 3465.47]
40 0.42 [0.41, 0.43] 53.08 [52.91, 53.32] 3431.36 [3348.90, 3482.41]
50 0.42 [0.41, 0.43] 52.17 [50.90, 52.89] 3351.42 [3225.16, 3473.48]
60 0.43 [0.41, 0.46] 52.03 [50.97, 52.81] 3415.46 [3310.31, 3480.73]
70 0.44 [0.41, 0.47] 52.31 [51.26, 53.12] 3389.79 [3253.80, 3487.13]
80 0.42 [0.40, 0.44] 52.44 [51.34, 53.14] 3381.82 [3247.99, 3481.96]
90 0.41 [0.40, 0.42] 52.76 [52.16, 53.25] 3389.46 [3255.43, 3485.06]
100 0.42 [0.41, 0.45] 52.29 [50.98, 53.01] 3461.42 [3428.59, 3484.64]
Baseline 0.44 [0.43, 0.45] 52.68 [51.82, 53.30] 3401.88 [3261.68, 3498.08]
Notes: Confidence intervals calculated using Bootstrap method with B=10000 (EFRON; HASTIE, 2016).
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Table 6 – Results for MPICH. First column represents the values of the heartbeat timestep. The
heartbeat period was equal to the timestep and the timeout was set 100 times higher. The
three other columns show the value of the benchmark for different message sizes.

Collective (allreduce benchmark)
HB

TimeStep
0 bytes 64 Kbytes 4 Mbytes

Avg (us) 95% CI Avg (us) 95% CI Avg (us) 95% CI
10 2.20 [2.11, 2.28] 27760.04 [27402.54, 28096.60] 52749.66 [51200.09, 55305.32]
20 0.95 [0.87, 1.03] 21610.24 [21267.92, 21932.17] 50928.56 [44011.85, 63328.82]
30 0.59 [0.52, 0.67] 17437.24 [16606.92, 18228.09] 51332.37 [43592.86, 60333.04]
40 0.47 [0.40, 0.53] 11820.09 [11207.82, 12400.70] 43767.17 [41193.04, 47146.26]
50 0.35 [0.32, 0.39] 7331.00 [6981.97, 7684.85] 40519.25 [39250.22, 41876.87]
60 0.31 [0.31, 0.32] 5478.90 [4980.91, 5952.76] 39709.90 [38237.29, 41389.11]
70 0.33 [0.31, 0.37] 3826.24 [3337.09, 4330.74] 40184.42 [38660.34, 41948.09]
80 0.31 [0.31, 0.31] 3239.07 [2735.64, 3766.80] 38848.18 [37802.44, 39940.02]
90 0.31 [0.30, 0.31] 2411.54 [1968.00, 3000.04] 43888.29 [36573.20, 56888.01]
100 0.33 [0.31, 0.37] 1888.59 [1759.97, 2019.38] 44941.63 [37340.96, 57920.79]
Baseline 0.30 [0.30, 0.30] 914.99 [883.80, 945.42] 43093.90 [35446.23, 55315.63]

Point-to-point (pingpong benchmark)
HB

TimeStep
0 bytes 64 Kbytes 4 Mbytes

Avg (us) 95% CI Avg (us) 95% CI Avg (us) 95% CI
10 0.80 [0.76, 0.83] 31.73 [30.64, 32.90] 3005.70 [2948.76, 3072.03]
20 0.78 [0.77, 0.80] 30.64 [28.79, 32.40] 2905.38 [2795.92, 3003.84]
30 0.75 [0.72, 0.78] 31.01 [29.48, 32.66] 2846.11 [2788.24, 2913.84]
40 0.73 [0.72, 0.74] 28.84 [28.00, 29.63] 2783.72 [2748.16, 2820.57]
50 0.71 [0.70, 0.72] 27.06 [25.69, 28.43] 2687.52 [2628.29, 2748.91]
60 0.72 [0.69, 0.76] 26.93 [25.62, 28.38] 2688.93 [2639.15, 2742.39]
70 0.70 [0.68, 0.72] 25.79 [24.49, 27.11] 2628.14 [2565.94, 2695.57]
80 0.71 [0.69, 0.73] 26.43 [25.06, 27.86] 2680.83 [2611.87, 2750.90]
90 0.70 [0.68, 0.71] 26.65 [25.03, 28.51] 2658.18 [2603.94, 2716.85]
100 0.69 [0.68, 0.70] 25.76 [24.61, 26.83] 2625.86 [2568.07, 2684.82]
Baseline 0.63 [0.61, 0.66] 22.09 [20.21, 24.23] 2483.75 [2386.37, 2590.18]

Notes: Confidence intervals calculated using Bootstrap method with B=10000 (EFRON;
HASTIE, 2016).
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Table 7 – Results for Open MPI + UCX. First column represents the values of the heartbeat timestep.
The heartbeat period was equal to the timestep and the timeout was set 100 times higher. The
three other columns show the value of the benchmark for different message sizes.

Collective (allreduce benchmark)
HB

TimeStep
0 bytes 64 Kbytes 4 Mbytes

Avg (us) 95% CI Avg (us) 95% CI Avg (us) 95% CI
10 0.05 [0.05, 0.05] 883.68 [883.68, 883.68] - -
20 0.05 [0.05, 0.05] - - - -
30 0.05 [0.05, 0.05] 472.00 [472.00, 472.00] - -
40 0.05 [0.05, 0.05] 1332.75 [1332.75, 1332.75] - -
50 0.05 [0.05, 0.05] - - - -
60 0.05 [0.05, 0.05] 604.82 [509.25, 700.38] - -
70 0.05 [0.05, 0.05] - - - -
80 0.05 [0.05, 0.05] - - - -
90 0.05 [0.05, 0.05] - - - -
100 0.05 [0.05, 0.05] 381.70 [381.70, 381.70] 33852.86 [33852.86, 33852.86]
Baseline 0.05 [0.05, 0.05] 399.37 [379.31, 425.72] 33398.40 [33255.59, 33610.15]

Point-to-point (pingpong benchmark)
HB

TimeStep
0 bytes 64 Kbytes 4 Mbytes

Avg (us) 95% CI Avg (us) 95% CI Avg (us) 95% CI
10 - - - - - -
20 - - - - - -
30 - - - - - -
40 - - - - - -
50 - - - - - -
60 0.53 [0.52, 0.54] - - - -
70 0.53 [0.53, 0.54] 100.99 [100.73, 101.25] - -
80 0.53 [0.53, 0.53] 101.49 [101.29, 101.71] - -
90 - - - - - -
100 0.53 [0.52, 0.53] - - - -
Baseline 0.53 [0.52, 0.53] 102.86 [102.85, 102.88] 2432.18 [2426.31, 2439.22]
Notes: Confidence intervals calculated using Bootstrap method with B=10000 (EFRON; HASTIE, 2016).
Cells without values means that the benchmark failed due to an internal UCX problem in Open MPI
implementation (See Section 6.3.2)
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Table 8 – Results for Open MPI. First column represents the values of the heartbeat timestep. The
heartbeat period was equal to the timestep and the timeout was set 100 times higher. The
three other columns show the value of the benchmark for different message sizes.

Collective (allreduce benchmark)
HB

TimeStep
0 bytes 64 Kbytes 4 Mbytes

Avg (us) 95% CI Avg (us) 95% CI Avg (us) 95% CI
10 0.06 [0.06, 0.07] 2884.09 [2819.94, 2968.05] 284888.06 [278535.19, 291792.66]
20 0.06 [0.06, 0.06] 2856.18 [2795.31, 2935.17] 301115.31 [292471.75, 309861.00]
30 0.06 [0.06, 0.06] 2827.52 [2780.63, 2878.73] 292687.72 [286011.81, 299279.84]
40 0.06 [0.06, 0.06] 2863.80 [2822.40, 2918.97] 296865.19 [290263.72, 303168.41]
50 0.06 [0.06, 0.06] 2798.88 [2781.79, 2813.63] 294105.81 [286383.91, 302833.06]
60 0.06 [0.06, 0.06] 2844.16 [2791.27, 2915.37] 295667.50 [289678.31, 301543.84]
70 0.06 [0.06, 0.06] 3132.21 [2839.24, 3505.13] 304192.75 [297085.56, 311414.56]
80 0.06 [0.06, 0.06] 2790.31 [2775.98, 2804.87] 297292.56 [289374.94, 306874.31]
90 0.06 [0.06, 0.06] 2827.02 [2784.57, 2883.77] 294403.44 [289497.28, 299831.69]
100 0.06 [0.06, 0.06] 2867.30 [2811.93, 2939.35] 294058.94 [286951.31, 301824.28]
Baseline 0.06 [0.06, 0.06] 2820.44 [2806.90, 2835.48] 281245.53 [273970.12, 287504.94]

Point-to-point (pingpong benchmark)
HB

TimeStep
0 bytes 64 Kbytes 4 Mbytes

Avg (us) 95% CI Avg (us) 95% CI Avg (us) 95% CI
10 2.51 [2.43, 2.60] 10.72 [10.14, 11.38] 2798.36 [2714.54, 2873.17]
20 2.37 [2.36, 2.39] 9.68 [9.64, 9.71] 2922.66 [2912.06, 2933.14]
30 2.36 [2.35, 2.37] 9.64 [9.61, 9.66] 2915.71 [2902.50, 2928.18]
40 2.36 [2.35, 2.37] 9.78 [9.62, 10.05] 2863.52 [2762.82, 2934.99]
50 2.35 [2.35, 2.36] 9.63 [9.61, 9.64] 2928.15 [2918.64, 2939.88]
60 2.42 [2.34, 2.56] 10.02 [9.64, 10.60] 2882.80 [2787.47, 2946.47]
70 2.34 [2.34, 2.35] 9.61 [9.59, 9.64] 2916.79 [2870.03, 2947.26]
80 2.38 [2.34, 2.45] 9.91 [9.62, 10.33] 2915.61 [2870.66, 2944.25]
90 2.40 [2.34, 2.50] 10.00 [9.62, 10.53] 2928.54 [2905.08, 2948.28]
100 2.33 [2.33, 2.34] 9.91 [9.63, 10.31] 2903.18 [2829.22, 2946.80]
Baseline 2.24 [2.22, 2.27] 10.30 [9.59, 11.07] 2827.86 [2663.85, 2941.29]

Notes: Confidence intervals calculated using Bootstrap method with B=10000 (EFRON;
HASTIE, 2016).
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Table 9 – Results for ULFM. First column represents the values of the heartbeat timestep. The heartbeat
period was equal to the timestep and the timeout was set 100 times higher. The three other
columns show the value of the benchmark for different message sizes.

Collective (allreduce benchmark)
HB

TimeStep
0 bytes 64 Kbytes 4 Mbytes

Avg (us) 95% CI Avg (us) 95% CI Avg (us) 95% CI
10 0.07 [0.07, 0.07] 14297.21 [13763.95, 14962.67] 109771.94 [77852.02, 156242.72]
20 0.07 [0.07, 0.07] 13265.29 [12738.71, 13604.62] 77929.30 [77474.73, 78678.44]
30 0.07 [0.07, 0.07] 12753.40 [12575.05, 12933.02] 91985.09 [77562.16, 119740.33]
40 0.07 [0.07, 0.07] 11204.03 [10440.45, 11951.01] 90990.47 [77406.55, 116492.10]
50 0.07 [0.07, 0.07] 12459.55 [12290.93, 12647.85] 78466.07 [77481.96, 79973.49]
60 0.07 [0.07, 0.07] 12196.63 [12017.29, 12397.97] 119983.02 [77811.94, 162522.72]
70 0.07 [0.07, 0.07] 11091.47 [10338.63, 11812.62] 109623.98 [77591.31, 156432.28]
80 0.07 [0.07, 0.07] 11864.26 [11695.04, 12043.56] 77560.58 [77387.98, 77755.94]
90 0.07 [0.07, 0.07] 10587.95 [9760.86, 11404.33] 122851.02 [80845.29, 166670.03]
100 0.07 [0.07, 0.07] 11513.36 [11033.86, 11861.66] 78220.79 [77704.94, 78976.55]
Baseline 0.07 [0.07, 0.07] 7925.70 [7346.41, 8508.13] 89538.92 [77349.63, 113777.73]

Point-to-point (pingpong benchmark)
HB

TimeStep
0 bytes 64 Kbytes 4 Mbytes

Avg (us) 95% CI Avg (us) 95% CI Avg (us) 95% CI
10 2.44 [2.35, 2.57] 11.26 [10.24, 12.77] 2755.84 [2594.89, 2873.93]
20 2.10 [2.04, 2.18] 9.15 [8.81, 9.62] 2599.37 [2384.57, 2718.48]
30 2.50 [2.38, 2.64] 11.13 [10.46, 11.85] 2584.57 [2345.41, 2816.22]
40 2.30 [2.03, 2.78] 9.67 [8.80, 11.01] 2427.94 [2010.55, 2712.90]
50 2.36 [2.35, 2.36] 10.33 [10.17, 10.62] 2865.91 [2850.34, 2880.61]
60 2.05 [2.03, 2.09] 8.89 [8.79, 9.06] 2640.45 [2543.86, 2699.63]
70 2.41 [2.36, 2.48] 10.58 [10.18, 11.15] 2710.36 [2502.20, 2875.15]
80 2.18 [2.06, 2.35] 9.62 [8.95, 10.40] 2227.86 [1802.37, 2589.42]
90 2.45 [2.35, 2.58] 10.84 [10.20, 11.55] 2701.73 [2434.69, 2890.82]
100 2.02 [2.01, 2.03] 8.76 [8.75, 8.78] 2702.91 [2695.57, 2710.38]
Baseline 2.41 [2.33, 2.56] 10.39 [10.10, 10.93] 2826.78 [2760.85, 2868.46]
Notes: Confidence intervals calculated using Bootstrap method with B=10000 (EFRON; HASTIE, 2016).
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APPENDIX D – OCFTL Configuration

OCFTL is proposed as a transparent library to the final user of OmpCluster, which
means that the final user does need to employ fault tolerance in the application source
code. On the other hand, OCFTL provides few configurations that the final user can do
via environment variables. These configurations are used to enable/disable the library,
configure the heartbeat and Veloc. Following, each configuration variable is explained, and
lastly, it is shown an example of how to configure the Veloc to be used as the checkpointing
library.

OMPCLUSTER_FT_DISABLE: This variable is used to disable FT on the Omp-
Cluster. Setting the value of 1 to the variable will disable all FT features. The default
value of this variable is 0.

OMPCLUSTER_HB_TIMESTEP: This variable defines (in ms) the timestep of
the heartbeat. The timestep is the interval that OCFTL will check the heartbeat events.
Should not be confused with the TIMEOUT or PERIOD. The default value of timestep is 50.

OMPCLUSTER_HB_TIMEOUT: This variable defines (in ms) the timeout prop-
erty of the heartbeat. The timeout is the amount of time a process will wait, without
receiving alive messages from its emitter, until saying that its emitter failed. This timeout
resets to its original value every time the process receives an alive message. The timeout
should never be lower than the OMPCLUSTER_HB_PERIOD, which will lead to false-positive
failures. The default timeout is 30s. It is advised to set this value when using OCFTL.

OMPCLUSTER_HB_PERIOD: This variable defines (in ms) the period property
of the heartbeat. The period is the amount of time a process will wait before sending the
next alive message to its observer. Values lower than OMPCLUSTER_HB_TIMESTEP will use
the value of the timestep configuration instead of the one set to this variable. The default
period is 1s. It is advised to set this value when using OCFTL.

OMPCLUSTER_CP_USEVELOC: Setting the value 1 to this variable would enable
the use of Veloc as checkpointing interface for OCFTL. Other values will disable Veloc.
Reminder: If the LLVM infrastructure compiles the OmpCluster without the presence of
Veloc. It will be disabled regardless of the variable value. The default value of this variable
is 0, disabling Veloc.

OMPCLUSTER_CP_EXECCFG: This variable sets the path to the configuration
file of Veloc. This file will be used by veloc to define how Veloc will save the checkpoints.
The value is unconsidered if OMPCLUSTER_CP_USEVELOC is set to 0. If OMPCLUSTER_CP_-
USEVELOC is set to 1 and this variable is unset, the Veloc will be disabled. There is no
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default value for this configuration.

OMPCLUSTER_CP_TESTCFG: This is a test variable for the continuous integra-
tion system of OmpCluster. The final users of the library should not use it.

OMPCLUSTER_CP_MTBF: This variable defines the Mean Time Between Failures
(MTBF) (in s) to be used by OCFTL to calculate the checkpointing interval. The default
value of this variable is 86400s (24h)

OMPCLUSTER_CP_WSPEED: This variable defines the write speed of the disk
(in MB/s) to be used by OCFTL to calculate the checkpointing interval. The default
value of this variable is 10MB/s.

When using Veloc, the user needs to provide a Veloc configuration file (OMPCLUSTER_-
CP_EXECCFG). This file contains the path for saving/loading checkpoints and some other
veloc configurations. The Algorithm 14 shows an example of a basic working configuration
file. More details and the full configurable Veloc variables can be checked in the Veloc
documentation1. The basic example of Algorithm 14 configures three veloc options. First,
scratch dir tells Veloc where to save the new checkpoints. Secondly, persistent dir tells
Veloc where to transfer the now saved checkpoints. Lastly, mode equals to async tells
Veloc to execute another program in the background to run Veloc operations; changing
this to sync will make Veloc operation be executed by the user application, not the Veloc
application.

Algorithm 14 – Basic configuration for Veloc.

1 scratch = /tmp/scratch
2 persistent = /tmp/persistent
3 mode = async

1 Available at: <https://veloc.readthedocs.io/en/latest/userguide.html#configure-veloc>

https://veloc.readthedocs.io/en/latest/userguide.html#configure-veloc
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APPENDIX E – Experimental Evaluation
Configuration

E.1 Configuration

To execute the experiments, several tools were used. Algorithm 15 shows the
configuration lines for the UCX and each MPI distribution tested.

Algorithm 15 – Configuration parameters for tools used

MPICH (UCX):

$ mpichversion | grep "config"
MPICH configure: --prefix=<install-path> --with-device=ch4:ucx

--with-ucx=<ucx-install-path>↪→

MPICH:

$ mpichversion | grep "config"
MPICH configure: --prefix=<install-path> --disable-silent-rules

--with-hwloc-prefix=system --with-pm=hydra --with-slurm=yes
--with-pmi=simple --with-device=ch3:nemesis

↪→

↪→

Open MPI (UCX):

$ ompi_info | grep "Configure comm"
Configure command line: --prefix=<install-path>

--with-ucx=<ucx-install-path> --enable-mca-no-build=btl-uct↪→

Open MPI:

$ ompi_info | grep "Configure comm"
Configure command line: --prefix=<install-path> --disable-silent-rules

ULFM:

$ ompi_info | grep "Configure comm"
Configure command line: --prefix=<install-path> --disable-silent-rules

--with-ft↪→

UCX:

$ ucx_info -v | grep "config"
configured with: --disable-logging --disable-debug --disable-assertions

--disable-params-check --enable-mt --prefix=<install-path>↪→
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E.2 MPI Behavior

This Section shows the configuration used for the experiments discussed in Sec-
tion 6.2. The configuration for building the benchmark is included in the source codes.
Algorithm 16 shows the command used for each benchmark. First, there is set a timeout for
each program. Following, in the command line, the variable $recovery_flag represents
the recovery flag to disable the cleanup of processes, since MPICH was used to execute the
tests, the value was disable-auto-cleanup. The variable $benchmark represents the MPI
operation. The variable $killed_proc means which one of the two processes where killed
and $op_variant represents the variant of the MPI operation (blocking, non-blocking
or synchronous).

Algorithm 16 – Runtime command line for evaluation the behavior of MPI operations

$ export MPIEXEC_TIMEOUT=5
$ mpirun -np 2 --$recovery_flag ./$benchmark $killed_proc $op_variant

>> $benchmark.out 2>> $benchmark.err↪→

E.3 OmpCluster

This Section shows the configuration used for the experiments discussed in Sec-
tion 6.3.1. These experiments leveraged the OmpCluster implementation in the taskbench
(<https://gitlab.com/ompcluster/task-bench>) and the OmpcBench (<https://gitlab.
com/ompcluster/ompcbench>) that are currently tools for internal testing of OmpClus-
ter. Table 10 shows the OCFTL parameters for testing its overhead over OmpCluster
— See Section 6.3.1.1. And Algorithm 17 shows the two versions of the Block-Matrix-
Multiplication algorithm used discussed in Section 6.3.1.2.

Table 10 – Fault tolerance configurations for the task bench experiments

OmpCluster OmpCluster + FT
OMPCLUSTER_FT_DISABLE 1 0
OMPCLUSTER_HB_TIMESTEP - 50
OMPCLUSTER_HB_TIMEOUT - 5000
OMPCLUSTER_HB_PERIOD - 1000
OMPCLUSTER_CP_USEVELOC 0 1
OMPCLUSTER_CP_EXECCFG - <path>/veloc.cfg

https://gitlab.com/ompcluster/task-bench
https://gitlab.com/ompcluster/ompcbench
https://gitlab.com/ompcluster/ompcbench
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Algorithm 17 – Block Matrix Multiplication algorithms with and without OmpCluster

1 #define BS 512
2 #define N 2048
3
4 int BlockMatMul_OmpCluster(BlockMatrix &A, BlockMatrix &B, BlockMatrix &C) {
5 #pragma omp parallel
6 #pragma omp master
7 for (int i = 0; i < N / BS; ++i)
8 for (int j = 0; j < N / BS; ++j) {
9 float *BlockC = C.GetBlock(i, j);

10 for (int k = 0; k < N / BS; ++k) {
11 float *BlockA = A.GetBlock(i, k);
12 float *BlockB = B.GetBlock(k, j);
13 #pragma omp target depend(in: BlockA[0], BlockB[0]) \
14 depend(inout: BlockC[0]) \
15 map(to: BlockA[:BS*BS], BlockB[:BS*BS]) \
16 map(tofrom: BlockC[:BS*BS]) nowait
17 #pragma omp parallel for
18 for(int ii = 0; ii < BS; ii++)
19 for(int jj = 0; jj < BS; jj++) {
20 for(int kk = 0; kk < BS; ++kk)
21 BlockC[ii + jj * BS] += BlockA[ii + kk * BS] * BlockB[kk + jj * BS];
22 }
23 }
24 }
25 return 0;
26 }
27
28 void Matmul_Sequential(float *a, float *b, float *c) {
29 for (int i = 0; i < N; ++i) {
30 for (int j = 0; j < N; ++j) {
31 float sum = 0.0;
32 for (int k = 0; k < N; ++k) {
33 sum = sum + a[i * N + k] * b[k * N + j];
34 }
35 c[i * N + j] = sum;
36 }
37 }
38 }

E.4 InteMPI Benchmarks

This Section shows the configuration used for the experiments discussed in Sec-
tion 6.3.2. These tests were done with multiple MPI distributions, so each distribution
was loaded before each experiment, to compile the IntelMPI Benchmarks it is necessary
to configure the CC=mpicc and CXX=mpic++ variables. For the experiments using OCFTL,
the library object is needed (<bench-dir>/ocftl/libocftl.a. Algorithm 21 shows the
modifications that were made in the benchmarks to run with OCFTL, and the Algo-
rithm 19 shows the modifications made in the benchmarks to run with ULFM-2. Finally,
Algorithm 20 shows how each benchmark was tests for each MPI tested. In these tests, the
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heartbeat parameters discussed in Section 6.3.2 for OCFTL were configured via enviroment
variables while for ULFM they are configure via runtime flags ($HB_PERIOD, $HB_TIMEOUT
and the flag --mca mpi_ft_enable <true|false> to enable/disable ULFM).

Algorithm 18 – Diff output of the IntelMPI benchmarks with and without OCFTL

diff -br mpi-benchmarks/src_cpp/imb.cpp
thesistests/IntelMPIBench/src_cpp/imb.cpp↪→

@@ 62a63 @@
+ #include "../ocftl/ft.h"
@@ 323a325,328 @@
+ FaultTolerance *ft = new FaultTolerance(1000, 3000,

MPI_COMM_WORLD);↪→

+ ft->disableAsserts();
+ ft->start_hb = true;
+
@@ 354a360,361 @@
+
+ delete ft;
diff -br mpi-benchmarks/src_cpp/Makefile

thesistests/IntelMPIBench/src_cpp/Makefile↪→

@@ 86a87,92 @@
+ # OCFTL addition
+ override CXXFLAGS += -std=c++11 -L../ocftl -g
+
+ # OCFTL Wrappers
+ OCFTL_WRAPPERS = -Wl,--wrap=MPI_Wait -Wl,--wrap=MPI_Test

-Wl,--wrap=MPI_Barrier -Wl,--wrap=MPI_Comm_free -Wl,--wrap=MPI_Mprobe
-Wl,--wrap=MPI_Send -Wl,--wrap=MPI_Recv

↪→

↪→

+
@@ 160c166,167 @@
- scope.h
---
+ scope.h \
+ ../ocftl/ft.h
@@ 180c187 @@
- $(CXX) $(CPPFLAGS) $(CXXFLAGS) -o $@ $^ $(LDFLAGS)
---
+ $(CXX) $(CPPFLAGS) $(CXXFLAGS) $(OCFTL_WRAPPERS) -o $@ $^

$(LDFLAGS) -locftl -lpthread↪→

E.5 OCFTL Benchmarks
This Section shows the configuration used for the experiments discussed in Sec-

tions 6.3.3 and 6.3.4. The configuration for building the benchmark is already present
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Algorithm 19 – Diff output of the IntelMPI benchmarks with and without ULFM additions

diff -br mpi-benchmarks/src_cpp/imb.cpp
thesistests/IntelMPIBench-ULFM/src_cpp/imb.cpp↪→

@@ 63a64,76 @@
+ #include <mpi-ext.h>
+ #include <stdio.h>
+ #include <unistd.h>
+ #include <signal.h>
+
+ void ErrorHandler(MPI_Comm *pcomm, int *perr, ...) {
+ int len, ec;
+ char errstr[MPI_MAX_ERROR_STRING];
+ MPI_Error_string(*perr, errstr, &len);
+ MPI_Error_class(*perr, &ec);
+ fprintf(stderr, "Found Error: %s (Error class %d)\n", errstr, ec);
+ }
+
@@ 322a336,339 @@
+
+ MPI_Errhandler errh;
+ MPI_Comm_create_errhandler(ErrorHandler, &errh);
+ MPI_Comm_set_errhandler(MPI_COMM_WORLD, errh);

with the source codes. These tests were also executed using the regular MPICH, and both
tests use the same program. Table 11 shows the enviroment variable values for each test.
Algorithm 22 shows the command line for running the benchmarks, $nprocs represents
the number of processes killed (same as FTLIB_TOTAL_FAILURES) and $type represents
if the failure are sequential (value 0) or random (value 1). For the internal broadcast
experiment, $type was equal to 1.

Table 11 – Runtime environment variables for the Locality and Internal Broadcast experi-
ments

Environment Variable Locality Broadcasts
OMPCLUSTER_FT_DISABLE 0
OMPCLUSTER_WRAPPERS_DISABLE 1
OMPCLUSTER_HB_TIMESTEP 1
OMPCLUSTER_HB_PERIOD 100
OMPCLUSTER_HB_TIMEOUT 1000
FTLIB_TOTAL_FAILURES <1|2|3|4|5|8|16>
FTLIB_RING_SHUFFLE <0|1> 0
FTLIB_WHICH_BC 0 <0|1|2>
MPIEXEC_TIMEOUT 60
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Algorithm 20 – IntelMPI Benchmark run commands for the different MPI distributions

PingPong Benchmark:

mpirun -np 480 $flags ./IMB-MPI1 pingpong -thread_level multiple -multi 1
-msglen lengths.txt >> res.out 2>> res.err # If OCFTL↪→

mpirun -np 480 $flags --mca mpi_ft_detector_period $HB_PERIOD --mca
mpi_ft_detector_timeout $HB_TIMEOUT ./IMB-MPI1 pingpong -thread_level
multiple -multi 1 -msglen lengths.txt >> res.out 2>> res.err # If
ULFM-2

↪→

↪→

↪→

Allreduce Benchmark:

mpirun -np 480 $flags ./IMB-MPI1 allreduce -thread_level multiple -npmin
480 -msglen lengths.txt >> res.out 2>> res.err # If OCFTL↪→

mpirun -np 480 $flags --mca mpi_ft_detector_period $HB_PERIOD --mca
mpi_ft_detector_timeout $HB_TIMEOUT ./IMB-MPI1 allreduce
-thread_level multiple -npmin 480 -msglen lengths.txt >> res.out 2>>
res.err # If ULFM-2

↪→

↪→

↪→

Algorithm 21 – Definition of length.txt file and runtime flags for each MPI distribution
tested

lengths.txt:

1 0
2 65536
3 4194304

flags:

flags="-x UCX_NET_DEVICES=mlx5_0:1" # For MPICH (UCX)
flags="iface ib0" # For MPICH
flags="-mca pml ucx -mca btl ^uct -x UCX_NET_DEVICES=mlx5_0:1" # For Open

MPI (UCX)↪→

flags="" #For Open MPI
flags="--mca orte_enable_recovery true --mca mpi_ft_enable true --mca

mpi_ft_verbose 1 --mca mpi_ft_detector true --mca
mpi_ft_detector_thread true" # For ULFM-2

↪→

↪→

Algorithm 22 – Runtime command line for evaluation OCFTL’s internal broadcast and
the locality experiments

$ mpirun -np 480 -iface ib0 --disable-auto-cleanup ./locality $nprocs
24 $type >> log.out 2>> log.err↪→
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